
Towards Network-Aware Service Placement in
Community Network Micro-Clouds

Mennan Selimi1,3, Davide Vega2, Felix Freitag1, and Luís Veiga3

1 Universitat Politècnica de Catalunya, BarcelonaTech, Spain
{mselimi, felix}@ac.upc.edu
2 University of Bologna, Bologna, Italy

{davide.vegadaurelio}@unibo.it
3 INESC-ID Lisboa / Instituto Superior Técnico, University of Lisbon, Portugal

{luis.veiga@}@inesc-id.pt

Abstract. Cloud services in community networks have been enabled by micro-
cloud providers. They form community network micro-clouds (CNMCs), which
grow organically, i.e. without being planned and optimized beforehand. Services
running in community networks face specific challenges intrinsic to these in-
frastructures, such as the limited capacity of nodes and links, their dynamics and
geographic distribution. CNMCs are used to deploy distributed applications, such
as streaming and storage services, which transfer significant amounts of data be-
tween the nodes on which they run. Currently there is no support given to users
for enabling them to chose better or the best option for specific service deploy-
ments. This paper looks at the next step in community network cloud service de-
ployments, by taking network characteristics into account when deciding place-
ment of service instances. We propose a service placement algorithm (PASP) that
minimizes the service overlay diameter, while fulfilling service specific criteria.
First, we characterize with simulations the potential performance gains of our
approach. Secondly, we apply our algorithm to deploy a distributed storage ser-
vice currently used in Guifi.net, and evaluate it in the real production network,
assessing the performance and effects of our algorithm. We find that our PASP
algorithm reduces the client reading times by an average of 16% (with a max.
improvement of 31%) compared to the currently used organic placement scheme.
Our results show how the choice of an appropriate set of nodes, taken from a
larger resource pool, can influence service performance significantly.

Keywords: community network micro-clouds, service placement

1 Introduction

Community networks or Do-It-Yourself networks (DIYs) are bottom-up built decen-
tralized networks, deployed and maintained by their own users. One successful effort
of such a network is Guifi.net4, located in the Catalonia region of Spain. Guifi.net is
defined as an open, free and neutral community network built by its members: citizens
and organizations pooling their resources and coordinating efforts to build and oper-
ate a local network infrastructure. Guifi.net network started in 2004 and today it has

4 http://guifi.net/



2

Fig. 1. Guifi.net nodes and links in Barcelona

Super Nodes

Client Nodes

Base Graph 
nodes

Core Graph 
nodes

G

Graph server

G

Fig. 2. Guifi.net topology

more than 30.000 operational nodes, which makes it the largest community network
worldwide [1]. Figure 1 shows as example the nodes and links of Guifi.net in the city of
Barcelona. Figure 2 shows the topology structure followed in Guifi.net. Client nodes are
connected to the super-nodes. These super-nodes interconnect through wireless links
different administrative zones.

Until recently, user-oriented local services were not much deployed because of the
lack of easy to use mechanisms to exploit the available resources within the commu-
nity network and due to other technological barriers. Early services include GuifiTV,
Graph servers, mail servers, game servers [1]. With the adoption of community network
micro-clouds (CNMC)5, i.e. the platform that enables cloud-based services in com-
munity networks, local user-oriented services gained a huge momentum. Community
network users started creating their own homegrown services and using alternative open
source software for some of today’s Internet cloud services, e.g., data storage services,
interactive applications such as Voice-over-IP (VoIP), video streaming, P2P-TV, [2] [3].
In a CNMC, a server (i.e. a low-power device such as a enhanced home gateway or
mini-PC) is connected to a node of the community network.

Since Guifi.net nodes and the connected servers are geographically distributed, it
needs to be decided where services should be placed in a network. If the underlying
network resources are not taken into account, a service may suffer from poor perfor-
mance, e.g, by sending large amounts of data across slow wireless links while faster
and more reliable links remain underutilized. Therefore, a key challenge in commu-
nity network micro-clouds is to determine the location of the service deployments, i.e.
which servers at a certain geographic points in the network. Due to the dynamic nature
of community networks and usage patterns, it is challenging to calculate an optimal
placement.

In this paper we aim at understanding the impact of network-aware service place-
ment decisions on end-to-end client performance. The main contributions of this paper
can be summarized as follows:

– We introduce a service placement algorithm that provides optimal service overlay
selection without the need to verify the whole solution space. The algorithm finds
the minimum possible distance in terms of the number of hops between two furthest
selected resources, and at the same time fulfil different service type quality criteria.

5 http://cloudy.community/



3

– We extensively study the effectiveness of our approach in simulations using real-
world node and usage traces from Guifi.net nodes. From the results obtained in the
simulation study, we are able to determine the key features of the network and node
selection for different service types.

– Subsequently, we deploy our algorithm, driven by these findings, in a real produc-
tion community network and quantify the performance and effects of our algorithm
with a distributed storage service.

2 System Model

2.1 Network structure

The Guifi.net community network consists of a set of nodes interconnected through
mostly wireless equipment that users, companies, administrations must install and main-
tain in addition to its links, typically on building rooftops. The set of nodes and links are
organized under a set of mutually exclusive and abstract structures called administrative
zones, which represent the geographic areas where nodes are deployed.

We have collected network description data through CNML files (obtained January
2016)6. CNML (Community Networks Markup Language) is an XML-based language
used to describe community networks. Guifi.net publishes a snapshot of its network
structure every 30 min with a description of registered nodes, links and their config-
urations. In the CNML description, the information is arranged according to different
geographical zones in which the network is organised. Furthermore, we used a Node
database: a dump of the community network database that, in addition to the data de-
scribed in CNML, includes other details about dates and people involved in the creation
and update of the configuration of nodes and links.

The CNML information obtained has been used to build two topology graphs: base-
graph and core-graph. The base-graph of Guifi.net is constructed by considering only
operational nodes, marked in Working status in the CNML file, and having one or more
links pointing to another node in the zone. Additionally, we have discarded some dis-
connected clusters. All links are bidirectional, thus, we use an undirected graph. We
have formed what we call the core-graph by removing the terminal nodes of the base
graph (i.e., client nodes). Table 1 summarizes the main properties of base and core
graphs that we use in our study e.g., number of nodes, node degree, diameter (number
of max hops in the sub-graph) and number of zones traversed in core and base-graph.

Table 1. Summary of the used network graphs

nodes / edges node degree
max/ mean/ min diameter zones

Base-Graph 13636 / 13940 537 / 2.04 / 1 35 129
Core-Graph 687 / 991 20 / 2.88 / 1 32 85

6 https://guifi.net/en/guifi/cnml/2413



4

2.2 Allocation model and architecture

In order to generalize the placement model for community services, we made the fol-
lowing assumptions that give to our model the flexibility to adapt to many different
types of real services. In our case, a service is a set of S generic processes or replicas
(with different roles or not) that interact or exchange information through the commu-
nity network. The service can also be a composite service (e.g., three-tier service) built
from simpler parts. These parts or components of a service would create an overlay and
interact with each other to offer more complex services. Each of the service replicas or
components will be deployed over a node in the network, where each node will host
only one process no matter which service it belongs to.

It is important to remark that the services aimed in this work should be at infra-
structure level (IaaS), as cloud services in current dedicated datacenters. Therefore the
services are deployed directly over the core resources of the network (nodes in the core-
graph) and accessed by base-graph clients. Services can be deployed by Guifi.net users
or administrators. The architecture that we consider is based on a hybrid peer-to-peer
model with three hierarchical levels of responsibility. On each level, members are able
to share information among themselves.

The coordination is managed by some peer (i.e., as a super-peer) designated from
the immediate upper layer. Three types of peers can be identified:

1. Community Nodes: are the computing equipment placed along the wireless com-
munity network by users. Besides contributing to the network quality and stability,
they share all or part of their physical resources with other community members
in an infrastructure as a service (IaaS) fashion. In terms of type and amount of re-
sources, our model assumes the nodes are different. This means that from service
point of view there is allocation preference.

2. Zone Managers: are single nodes - only one within each zone, selected among all
the Community nodes with the extra responsibility to manage local zone services
and coordinate inter zones aggregated information. In our model we do not explic-
itly identify these managers and we assume the existence of at least one of them in
each area.

3. The Controller: is a unique centralized entity in our system. The role of the con-
troller is to manage all the service allocation requests from the users and update
service structures by pulling the configuration information for the zone managers.
The allocation algorithms are implemented in the controller.

2.3 Service quality parameters

Resource dispersion in a community network scenario can be a drawback or an advan-
tage, as the Nebula [4] authors claim in their research. The overlay created by composite
services abstracts from actual underlying network connections. Based on that, services
that require intensive inter-component communication (e.g streaming service), can per-
form better if the replicas (service components) are placed close to each other in high
capacity links [2]. On other side, bandwidth-intensive services (e.g., distributed storage,
video on-demand) can perform much better if their replicas are as close as possible to
their final users (e.g. overall reduction of bandwidth for service provisioning).



5

Table 2. Service-specific quality parameters

Type of service Examples of services Network metrics Graph metrics

Bandwidth-intensive
distributed storage, video-on-demand

network graph server, mail server

availability

closeness
closeness
centrality

Latency-sensitive
VoIP, video-streaming

game server, radio station server

availability

latency
betweenness

centrality

If we have some information about the application SLAs in community networks
and node behaviour from the underlying network, decisions can be made accordingly,
in order to promote that certain types of applications are executed in certain type of
nodes with better QoS.

Our algorithm considers the following network and graph metrics as shown in Table
2, when allocating different type of services.

– Availability: The availability of a node is defined as the percentage of ping requests
that the node replies when requested by the graph-server system. Graph-servers are
distributed in Guifi.net and are responsible for performing network measurements
between nodes. This is an important metric for service life-cycle and is considered
for two service types. It is measured in percentage (%).

– Latency: The latency of a node is defined as the time it takes for a small IP packet
to travel from the Guifi.net graph-servers through the network to the nodes and
back. It is an important metric for latency-sensitive service in CNMCs. It is mea-
sured in milliseconds (ms).

– Closeness: The closeness is defined as the average distance (number of hops) from
the solution obtained from the algorithm to the clients. It is an important metric for
bandwidth-sensitive services. It is measured in number of hops.

In terms of graph centrality metrics, we consider closeness and betweenness central-
ity. Closeness centrality is a good measure of how efficient a particular node is in prop-
agating information through the network. Betweenness centrality quantifies the number
of times a node acts as a bridge along the shortest path between two other nodes.

3 Service Placement Algorithm

We designed an algorithm that explores different placements searching for the local
minimal service overlay diameter while, at the same time, fulfilling different service
type quality parameters. Algorithm 1 relies on the method PASP () to evaluate the
different service placements in different zones and generate the solutions. The algorithm
tries to find a solution in each zone by applying Breadth-First Search (BFS) and utilizing
the IsBetter method to choose the best solutions by applying service policies shown
at Table 2. In the case of equal diameter allocations, the mean out-degree (the mean
boundary of the nodes in the service overlay with the nodes outside of it) is taken. The
service allocation with smallest diameter and largest mean out-degree fulfilling different



6

Algorithm 1 Policy-Aware Service Placement (PASP)
Require: N(Vn,En) Û Network graph
Require: Z(Vz,Ez) Û Zones graph
Require: Zone Û Search solution zone
Require: S Û Number of nodes in the service
Require: ServiceP olicy Û Service specific policies

1: procedure PASP(N, Z, Zone, S, ServiceP olicy)
2: Community Ω Vn œ Vzi

3: BestSolution Ω null
4: for all node œ Community do
5: solution ΩBREADTHFIRSTSEARCH(N, Community, node, S)
6: if ISBETTER(solution, BestSolution, ServiceP olicy) then
7: BestSolution Ω solution
8: end if
9: end for

10: return BestSolution
11: end procedure
12: procedure ISBETTER(currentSolution, bestSolution, ServiceP olicy)
13: for all p œ ServiceP olicy do
14: result ΩCHECKPOLICY(currentSolution, bestSolution, p)
15: end for
16: return result
17: end procedure

service quality parameters is kept as the optimal. The algorithm iterates using Breadth-
First-Search algorithm (BFS) in the network graph, taking as root the given node and
selecting the first S ≠ 1 closest resources to it. The node with high degree centrality is
initially chosen as root. Degree centrality is the fraction of nodes that a particular node
is connected to. In the case of several nodes at the same distance, nodes are selected
randomly, distributing thus uniformly. Thanks to this feature, our algorithm performs
faster than a pure exhaustive search procedure, since size equivalent placements are not
evaluated. It is worth noting that the same set of nodes might be obtained from different
root nodes, since placements in nearby network areas would involve the exact same
nodes. We avoid re-evaluating these placements with a cache mechanism, that improves
algorithm efficiency. After the placement solutions for different number of services are
returned from BFS, the solutions are compared regarding the service quality parameters.

For each solution set obtained, we check our defined service-specific policies and
then accordingly we calculate different scores (e.g., latency or availability score). Once
we have the these scores for each solution set, we utilize the IsBetter method to com-
pare the solutions and to choose the new best placement solution according to different
service types. Currently, the algorithm has not been optimized regarding the computa-
tion time, but it provides near-optimal overlay allocations, as our results show, without
need of verifying the whole solution space.



7

4 Experimental Results

4.1 Network behaviour and algorithmic performance

Our service placement algorithm proposed in Section 3 is used to simulate the place-
ment of different services in Guifi.net. Our goal is to determine the key features of the
network and its nodes, in particular to understand the network metrics that could help
us to design new heuristic frameworks for smart service placement in CNMCs.

From the data obtained, our first interest is to analyse the availability and latency of
Guifi.net nodes. This can be used as an indirect metric of quality of connectivity that
new members may expect from the network.

Figure 3 shows that 40% of the base-graph nodes are reachable from the network
90% or less of the time. The situation seems to be better with the core-graph nodes,
which are the most stable part of the network (i.e., 20% of the core-graph nodes have
an availability of 90% or less). Core-graph nodes have higher availability because they
comprise the backbone of the network and connect different administrative zones. The
successful operation of the base-graph nodes depends on the core-graph nodes. In this
work, the services are placed on the core-graph nodes. Therefore, selecting the core-
graph nodes with higher availability is of high importance (i.e., avoiding core-graph
nodes with 90% or less availability).

Figure 4 depicts the Empirical Cumulative Distribution Function (ECDF) plot of
the node latency. Similar to the availability case, the latency of the core-graph nodes
is slightly better. For both cases, 30% of the nodes have latency of 480 ms or less,
which makes the other 70% of the nodes to have higher latency. The availability and
latency graph demonstrate the importance of, and indeed the need for, a more effec-
tive, network-aware placement in micro-clouds. By not taking the performance of the
underlying network into account, applications can end up sending large amounts of
data across slow wireless links while faster and more reliable links and nodes remain
under-utilized.

In order to see the effects of the network-aware placement in the solutions obtained,
we compare two versions of our algorithm. The first version i.e., Baseline, allocates
services just with the goal of minimizing the service overlay diameter without consider-
ing node properties such as availability, latency or closeness. The second version of the
algorithm called PASP , tries to minimize the service overlay diameter, while taking
into account these node properties.

The availability and latency of the Baseline solutions are calculated by taking the
average of nodes in the optimal solutions (after the optimal solution is computed), where
the optimal solution is the best solution that minimizes the service overlay diameter, that
can only be calculated exhaustively offline.

We allocate services of size 3, 5, 7, 9, 11 and 15. Figure 5 and Figure 6 reveal that
nodes obtained in the solutions with PASP have higher average availability and lower
latency than with Baseline, with minimum service overlay diameter. On average, the
gain of PASP over Baseline is 8% for the availability, and 45 ms for the latency
(5-20% reduction).

We find that our PASP algorithm is good in finding placement solutions with
higher availability and lower latency, however the service solutions obtained might or



8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 20 30 40 50 60 70 80 90 100

EC
DF

Availability

Base Graph
Core Graph

Fig. 3. ECDF of node availability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

100 200 300 400 500

EC
DF

Latency (ms)

Base Graph
Core Graph

Fig. 4. ECDF of node latency

Fig. 5. PASP-Availability Fig. 6. PASP-Latency Fig. 7. PASP-Closeness

might not be very close (in terms of number of hops) to base-graph clients. Because of
this we also developed another flavour of PASP algorithm called PASP ≠ closeness.
Figure 7 shows the number of solutions obtained that are 1-hop close to the base-graph
clients. When PASP ≠ closeness algorithm allocates three services, on average there
are three solutions whose internal nodes (e.g, any of the nodes) are at 1-hop distance to
any of the base-graph client nodes, contrary to the Baseline where on average there is
one solution whose nodes are at 1-hop distance to base-graph clients.

Overall, in the two algorithms, there is a trade-off between latency and closeness.
For bandwidth-intensive applications closeness seems to be more important when al-
locating services (e.g., PASP ≠ closeness can be used), while for latency-sensitive
applications it is the latency the one that naturally seems to be more important (e.g.,
PASP ≠ latency can be used).

Moreover, from working with the Guifi.net data, we observed some patterns in the
node features that conforms optimal allocations. We saw that the solution overlay di-
ameter depends on the nodes degree centrality. Minimum degree centrality can be used
to select the first node that composes the service (the solution). We saw that most of the
solutions obtained are concentrated on a small set of of average centrality values. Select-
ing the next nodes in a particular range of closeness centrality (for bandwidth-intensive
services) and betweenness centrality (for latency-sensitive services) is specially useful
to obtain more optimal overlays.

4.2 Deployment in a real production Community Network

In order to understand the gains of our network-aware service placement algorithm
in a real production community network, we deploy our algorithm in real hardware



9

0.0

0.5

1.0

1.5

0 1 2 3 4
x (km)

y(
km

)

UPCc6-ab

GSmVictoria-RK71

UPC

Fig. 8. QMP topology Fig. 9. Average reading time on clients side

connected to the nodes of the QMP7 network, which is a subset of Guifi.net located in
the city of Barcelona. Figure 8 depicts the topoloqy of the QMP network. Furthermore,
a live QMP monitoring page updated hourly is available in the Internet 8.

We use 16 servers connected to the wireless nodes of QMP. The nodes and the at-
tached servers are geographically distributed in the city of Barcelona. The hardware of
the servers consists of Jetway devices, which are equipped with an Intel Atom N2600
CPU, 4 GB of RAM and 120 GB SSD. They run an operating system based on Open-
WRT, which allows running several slivers (VMs) on one node simultaneously imple-
mented as Linux containers (LXC).

The slivers host the Cloudy9 operating system. Cloudy contains some pre-integrated
distributed applications, which the community network user can activate to enable ser-
vices inside the network. Services include a streaming service, a storage service and a
folder synchronizing service, among others. For our experiments, we use the storage
service, which is based on Tahoe-LAFS10. Tahoe-LAFS is an open-source distributed
storage system with enforced security and fault-tolerance features, such as data encryp-
tion at the client side, coded transmission and data dispersion among a set of storage
nodes.

As the controller node we leverage the experimental infrastructure of Community-
Lab11. Community-Lab provides a central coordination entity that has knowledge about
the network topology in real time. Out of the 16 devices used, three of them are storage
nodes and 13 of them are clients (chosen randomly) that read files. The clients are
located in different geographic locations of the network. The controller is the one that
allocates the distributed storage service in these three nodes and clients access this
service. On the client side we measure the file reading times. We monitored the network
for the entire month of January 2016. The average throughput distribution of all the links
for one month period was 9.4 Mbps.

Figure 9 shows the average download time for various file sizes (2-64 MB) per-
ceived at the 13 clients, after allocating services using Random algorithm (i.e., cur-
rently used at Guifi.net) and using our PASP algorithm. The experiment is composed

7 http://qmp.cat/
8 http://dsg.ac.upc.edu/qmpsu/index.php
9 http://cloudy.community/

10 https://tahoe-lafs.org/trac/tahoe-lafs
11 https://community-lab.net/

http://qmp.cat/
http://dsg.ac.upc.edu/qmpsu/index.php
http://cloudy.community/
https://tahoe-lafs.org/trac/tahoe-lafs
https://community-lab.net/


10

of 20 runs, where each run has 10 repetitions, and averaged over all the successful runs.
Standard deviation error bars are also shown.

Regarding the network interferences that may be caused by other users concurrent
activities which can impact the results of our experiments, we reference to our earlier
work [5] which investigated these issues.

Allocation of services using Random algorithm by Controller is done without tak-
ing into account the performance of the underlying network. It can be seen for instance
that when using our PASP algorithm for allocation, it takes around 17 seconds for the
clients on average to read a 8 MB file. In the random case, the time is almost doubled,
reaching 28 seconds for reading a file from the clients side. We observed therefore that
when allocating services, taking into account the closeness and availability parameters
in the allocation decision, on average (for all clients) our algorithm reduces the client
reading times for 16%. Maximum improvement (around 31%) has been achieved when
reading larger files (64 MB). When reading larger files client needs to contact many
nodes in order to complete the reading of the file.

5 Related Work

Service placement is a key function of cloud management systems. Typically, it is re-
sponsible for monitoring all the physical and virtual resources on a system and balance
their load through the allocation, migration and replication of tasks.

Data centers: Choreo [6] is a measurement-based method for placing applications
in the cloud infrastructures to minimize an objective function such as application com-
pletion time. Choreo makes fast measurements of cloud networks using packet trains as
well as other methods, profiles application network demands using a machine-learning
algorithm, and places applications using a greedy heuristic, which in practice is much
more efficient than finding an optimal solution. In [7] the authors proposed an opti-
mal allocation solution for ambient intelligence environments using tasks replication to
avoid network performance degradation. Volley [8] is a system that performs automatic
data placement across geographically distributed datacenters of Microsoft. Volley ana-
lyzes the logs or requests using an iterative optimization algorithm based on data access
patterns and client locations, and outputs migration recommendations back to the cloud
service.

Distributed Clouds: There are few works that provides service placement in dis-
tributed clouds with network-aware capabilities. The work in [9] proposes efficient
algorithms for the placement of services in distributed cloud environment. Their al-
gorithms need input on the status of the network, computational resources and data
resources which are matched to application requirements. In [10] authors propose a se-
lection algorithm to allocate resources for service-oriented applications and the work
in [11] focuses on resource allocation in distributed small datacenters.

Service Migration: Regarding the service migration in distributed clouds, few works
came out recently. The authors in [12] and [13] study the dynamic service migration
problem in mobile edge-clouds that host cloud-based services at the network edge.
They formulate a sequential decision making problem for service migration using the
framework of Markov Decision Process (MDP) and illustrate the effectiveness of their



11

approach by simulation using real-world mobility traces of taxis in San Francisco. The
work in [14] studies when services should be migrated in response to user mobility and
demand variation.

Our focus is to perform service placements in community network clouds, which are
peer-to-peer clouds formed from low-resource machines and very dynamic and diverse
network. Another work in the community network context related to ours is [15] where
the authors propose service allocation algorithms that minimize the coordination and
overlay cost along the network.

6 Conclusion and Future Work

We addressed the need for network-aware service placement in community network
micro-cloud infrastructures. We looked at a specific case of improving the deployment
of service instance on micro-servers for enabling an improved distributed storage ser-
vice in a community network.

As services become more network intensive, the bandwidth, latency etc., between
the used nodes becomes the bottleneck for improving performance. In community net-
works, the limited capacity of nodes and links and an unpredictable network perfor-
mance becomes a problem for service performance. Network awareness in placing ser-
vices allows to chose more reliable and faster paths over poorer ones.

In this work we introduced a service placement algorithm that provides improved
overlay service selection for distributed services considering service quality parame-
ters, without the need for exploring the whole solution space. For our simulations we
employed a topological snapshot from Guifi.net to identify node traits in the optimal
service placements. We deployed our service placement algorithm in a real network
segment of Guifi.net, a production community network, and quantified the performance
and effects of our algorithm. We conducted our study on the case of a distributed storage
service. In experiments we showed that by using our service placement algorithm, we
were able to improve the total file reading time comparing to the currently used random
placement.

In next steps we plan to develop and implement a decentralized version of our in-
vestigated service placement algorithm. Service migration should also be addressed to
support performance objectives in the case of user mobility and within dynamic changes
in the network.

Acknowledgement

This work was supported by the EU Horizon 2020 Framework Program project net-
Commons (H2020-688768), by the EMJD-DC program and by the Spanish Govern-
ment under contract TIN2013-47245-C2-1-R. This work was also supported by the
national funds through Fundação para a Ciência e a Tecnologia with reference
UID/CEC/50021/2013.



12

References

1. Selimi, M., et al.: Cloud services in the guifi.net community network. Computer Networks
93, Part 2 (2015) 373 – 388 Community Networks.

2. Selimi, M., et al.: Integration of an assisted p2p live streaming service in community network
clouds. In: Proceedings of the IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom 2015), IEEE (November 2015)

3. Selimi, M., et al.: Performance evaluation of a distributed storage service in community
network clouds. Concurrency and Computation: Practice and Experience (2015) n/a–n/a
cpe.3658.

4. Ryden, M., et al.: Nebula: Distributed edge cloud for data intensive computing. In: IEEE
International Conference on Cloud Engineering (IC2E), 2014. (March 2014) 57–66

5. Cerdà-Alabern, L., Neumann, A., Escrich, P.: Experimental evaluation of a wireless com-
munity mesh network. In: Proceedings of the 16th ACM International Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems. MSWiM ’13, New York,
NY, USA, ACM (2013) 23–30

6. LaCurts, K.e.a.: Choreo: Network-aware task placement for cloud applications. In: Proceed-
ings of the 2013 Conference on Internet Measurement Conference. IMC ’13, New York, NY,
USA, ACM (2013) 191–204

7. Herrmann, K.: Self-organized service placement in ambient intelligence environments. ACM
Trans. Auton. Adapt. Syst. 5(2) (May 2010) 6:1–6:39

8. Agarwal, S., et al.: Volley: Automated data placement for geo-distributed cloud services. In:
Proceedings of the 7th USENIX Conference on Networked Systems Design and Implemen-
tation. NSDI’10, Berkeley, CA, USA, USENIX Association (2010) 2–2

9. Steiner, M., Gaglianello, B.e.a.: Network-aware service placement in a distributed cloud
environment. In: Proceedings of the ACM SIGCOMM 2012 Conference. SIGCOMM ’12,
New York, NY, USA, ACM (2012) 73–74

10. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition in the
cloud. In: Proceedings of the 21st International Conference on World Wide Web. WWW
’12, New York, NY, USA, ACM (2012) 959–968

11. Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed clouds. In:
INFOCOM, 2012 Proceedings, IEEE. (March 2012) 963–971

12. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic service migra-
tion in mobile edge-clouds. CoRR abs/1506.05261 (2015)

13. Wang, S., et al.: Dynamic service placement for mobile micro-clouds with predicted future
costs. In: IEEE International Conference on Communications (ICC). (June 2015) 5504–5510

14. Urgaonkar, R., et al.: Dynamic service migration and workload scheduling in edge-clouds.
Performance Evaluation 91 (2015) 205 – 228 Special Issue: Performance 2015.

15. Vega, D., Meseguer, R., Cabrera, G., Marques, J.: Exploring local service allocation in
community networks. In: 10th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob’14), IEEE. (Oct 2014) 273–280

View publication statsView publication stats

https://www.researchgate.net/publication/305984622

	 Towards Network-Aware Service Placement in Community Network Micro-Clouds 

