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Abstract— Collaborative and volunteer applications need to 
implement incentive mechanisms to regulate resource sharing 
and encourage network nodes to contribute for reaching a 
certain goal. Typically, these incentive mechanisms assign 
resources to network node requests, based on the total amount of 
resources contributed by the requesting participant. This 
approach assumes that participants contributing more should 
also get back more resources from the collaborative environment. 
This assumption turns the system unfair to those participants 
with scarce resources, because they have just few resources to 
share. This paper proposes the use of an incentive strategy based 
on the contribution percentage of each node; i.e. an effort-based 
approach. This proposal is evaluated and compared to 
contribution-based strategies. The obtained results show that the 
proposed effort-based approach not only benefits participants 
that have scarce resources, but also it is able to satisfy the 
requests of the powerful nodes.  

Keywords— Collaborative computing, resource sharing, effort-
based incentives, volunteer participation. 

I.  INTRODUCTION 

Advances in wireless communication technology and 
mobile computing have transformed the physical scenario in a 
heterogeneous ecosystem where several device types can 
cooperate to reach individual or group goals. For example, an 
application running in a cellular phone can ask for help to other 
mobile computing devices in the neighborhood, to disseminate 
information to pedestrians in a certain area; e.g. the today’s 
menu of restaurants located in a food court, or the offers of the 
day in a shopping mall. This type of collaborative applications 
usually utilizes volunteer approaches for information 
processing and dissemination, which also involve CPU, 
memory and energy of the devices participating in this process.  

In collaborative volunteer computing [1,2], the participants 
share part of their hardware resources (e.g. CPU and memory) 
to help other participants to perform certain tasks. These 
participants are connected through a network. Therefore the 
collaborative environment can be seen as a heterogeneous 
mesh, where each one represents a network node. When a node 
requires more resources than those that it has locally available, 
it must borrow the extra resources to other nodes. As nodes 
request resources to other nodes and also provide their own 
resources to others, a sharing ecosystem is created, in which 
the participants interchange time slots of their resources. In 
order to have a sustainable ecosystem, participants must return 
the borrowed resources once they not needed anymore. A free 

and unrestricted access to the shared resources without the 
need to contribute with the ecosystem, will carry the sharing 
space to the point in which the resources are exhausted; 
therefore the ecosystem becomes useless. This problem, known 
as the “tragedy of the commons” [3], is caused by nodes doing 
free-riding [4]. 

Incentives mechanisms are typically used to regulate global 
and individual benefits, by encouraging nodes to collaborate 
and granting them a “fair” return for their contributions. 
Traditional methods to grade peers collaboration (i.e., to 
calculate their expected return) are based on absolute hardware 
contribution measurements. Some research works argues that 
nodes contributing more resources should receive in return a 
better service than those that contribute less [5, 6]. Such a 
contribution-based mechanism is simple and efficient in most 
cases. However, it has been demonstrated that when we apply 
contribution-based mechanisms in heterogeneous scenarios, the 
nodes tend to share and cooperate only between equals – in 
terms of resources [7]. Hence, nodes with scarce resources 
suffer discrimination because they have not enough resources 
to contribute. 

This paper proposes and evaluates an effort-based 
mechanism for resource sharing in collaborative applications. 
This mechanism is based on the proposal of [8] that considers 
the nodes’ effort, instead of taking into account only the 
absolute value of the nodes contributions. In order to evaluate 
the potential benefits for applications working in collaborative 
scenarios, we have simulated several test cases in which nodes 
share their resources (particularly, CPU slots) and make 
decisions about when and how collaborate, using an Iterative 
Prisoners’ Dilemma game [9].  

The obtained results show that when nodes use an effort-
based strategy to make a collaboration decision, the process 
tends to be fair for every type of node. We have also observed 
that the percentage of tasks that nodes with scarce resources 
can perform in the system increases without harming the 
powerful nodes performance.  

Next section presents a discussion on effort-based and 
contribution-based incentive strategies. It particularly shows 
the impact that the network scale and topology have on the 
collaboration process. Section III describes the framework used 
in the simulations conducted to try clarifying this issue. Section 
IV presents and discusses the obtained results. Finally, Section 
V presents the conclusions and the future work. 



II. EXPLORATION OF EFFORT-BASED INCENTIVES  

Rahman et al. [8] applied effort-based incentives to share 
resources in the BitTorrent protocol and also in a generic 
credit-based sharing ratio enforcement scheme. For the 
scenario, a BitTorrent-like system was simulated. The upload 
bandwidth was the metric considered to assess the peers 
reciprocal actions. The system simulated two types of peers: 
fast and slow peers, while the latter had half of the upload 
capacity of the first ones. The proportion of these node types in 
the BitTorrent swarm was varied in each experiment. The 
simulation results showed a greater utilization of the available 
resources when the effort-based incentives was used. 
Moreover, that strategy also contributed to reduce the 
download times of slow peers. It was observed that sometimes 
the fast peers had to sacrifice some of their performance.  

Similarly, the BitTorrent simulation using a credit-based 
sharing ratio enforcement scheme was also done with two 
types of peers, one with high upload and download capacity, 
and the second one with low exchange capacity. The results 
showed that the download performance of the peers increased.  

While the results of both incentive strategies of [8] are 
encouraging, the comparison between them leaves open 
questions regarding the impact of the network scale and of the 
topology on the collaboration process. We extend such a study 
by addressing the previously mentioned open issues. In our 
study the simulations involve more than 100 nodes and 
different network topologies. Moreover, we extend the binary 
classification of peer capacities towards a continuum of 
capacities that allow the nodes to make requests for different 
amounts of resources. 

In an initial exploration of the effort-based approach, we 
performed four simulations on a peer-to-peer network with a 
small-world topology, and 125 nodes playing the Iterative 
Prisoner’s Dilemma game. In the first three experiments, the 
nodes apply a tit-for-tat strategy to decide when to cooperate 
and with whom. In the fourth experiment the nodes apply an 
effort-based strategy to decide their next cooperation action. 
Figure 1 shows the cooperation coefficient – round by round - 
for all strategies. The results show that in the contribution-
based tit-for-tat strategy without forgiveness, i.e. replying 
strictly reciprocal to the previous action of the other node, all 
nodes start to defect requests of other nodes after the first 50 
transitional rounds.    

When a forgiveness variant is applied, the nodes are able to 
recover from this situation and cooperate between 17% and 
11% of the times. However, in the effort-based strategy, the 
nodes receive more contributions from their neighbors and thus 
they achieve a higher satisfaction. 

Provided the differences in the nodes cooperation 
coefficient when using both approaches, we analyze in the 
study described in this paper in detail these differences in terms 
of global cooperation, resources distribution and locality 
satisfaction for both strategies (i.e. contribution-based and 
effort-based). For understanding these issues, several 
simulations were conducted using different scenarios, 
represented through multiple overlay topologies and resources 
distributions. 

 

Figure 1.  Nodes cooperation results, round by round  

III. EXPERIMENTAL FRAMEWORK 

All experiments performed in this study were done with a 
cooperative game simulator [10]. This tool allows configuring 
a large number of scenarios, reproducing the experiments and 
also isolating the variables to be studied. The simulator is also 
able to extract statistical results from the nodes behavior, when 
these nodes play a particular collaborative game. 

 We consider a stationary network scenario in order to 
focus our analysis on the impact produced by the network scale 
and topology. Links between nodes were considered 
homogeneous and stable; i.e. they do not change during the 
experiment. However, the nodes are heterogeneous (with a 
different number of CPU slots). These nodes play an Iterative 
Prisoner’s Dilemma game with their neighboring nodes, upon 
the predefined network topology. 

Every experiment in this study involved simulations 
performed over a discrete scenario with 250 rounds. The 
results of a previous work show that this number of rounds is 
enough to extract significant statistical conclusions after 
discarding the first fifty transitional rounds [10]. 

The first step in the simulation process is to load a certain 
network topology type, which is created by a topology 
generator. The network edges are undirected and non-
weighted. The values for the variables representing the 
environmental conditions (i.e. CPU slots distribution, 
simulation time, nodes strategy) were predefined. Then, the 
simulations were executed with only one independent variable, 
assuring thus that the results reflect the impact of just that 
variable.  In the next sections, we describe the network 
topologies, the process to model resources and nodes behavior, 
and the resources sharing strategies used in the simulations. 

A. Network topologies 

Our evaluation has been mostly conducted in networks of 
small-world topology, since social networked scenarios exhibit 
properties that are usually present in this topology [11, 12]. The 
small-world effect has also been considered for collaborative 
and peer-to-peer networking applications. However, we have 
also used a torus topology to assess if there is any dependence 
of the obtained simulation results on the network topology.   



 
Figure 2.  Network topologies used in the study 

Torus: This topology involves an N-dimensional torus, 
defined as the Cartesian product of N rings. A symmetric torus 
is a regular topology that connects the head node with the tail 
node in each row and column. Thus this topology eliminates 
the edge effect. Consequently, the torus structures preserve all 
the topological properties; therefore the properties of one node 
are representative for the rest of the network nodes. 

Small-world: Two characteristics distinguish the small-
world topology from other kinds of networks: (1) there is a 
small average path length between each pair of nodes and (2) 
the topology has a high clustering coefficient that is 
independent of the network size. 

B. Modeling resources and nodes behavior 

Each network node represents a computing device (e.g. a 
handheld, desktop computer or router) with a fixed amount of 
resources available to be used by itself and other nodes. The 
nodes can share their resources with the neighboring nodes 
according to the network topology. 

In our simulations, the resource type considered was just 
CPU slots. However any other type of resource can be shared 
in a real situation, e.g. the GPS, videocamera, memory and the 
network card. The CPU slots were randomly distributed among 
the nodes during each simulation initialization, using a 
discretized normal distribution with a lower bound of 1 CPU 
slot per node.  

In each round, if a node completed its own tasks, it will 
generate a new task with 50% of probability. At this point, it 
does not matter if the node is running on its CPU slots other 
nodes’ tasks. When a node decides to perform a task, it 
calculates the task cost in terms of needed CPU slots and time 
(rounds to perform it). The CPU requirements are randomly 
determined using a discrete normal distribution, with a mean of 
6 slots and a variance of 2. The minimum number of CPU slots 
asked in a request is 1. The number of rounds needed to 
perform the task is randomly determined using a discrete 
uniform probability distribution, with a minimum value of 1 
and a maximum of 3.  

Whenever a node needs to perform a task, and after it has 
calculated the task cost, it first tries to use its own free CPU 
slots to complete it. If the node does not have enough free CPU 
slots, then it asks to its neighboring nodes for the CPU slots 
needed to accomplish the task. The decision on whether a node 
will cooperate or defect is modeled by the Iterative Prisoner’s 
Dilemma.  

Once the requesting node has achieved enough CPU slots 
to perform the task, these CPU slots will be blocked for the 
duration of the task. Any excess in the lent CPU slots will be 
released. If not enough slots are obtained for the task, all 

obtained slots are released; therefore they can be used to 
support other requesting nodes. 

C. Sharing strategy 

Each node plays a cooperative game with all of its 
neighboring nodes whenever the node needs more CPU slots. 
The Iterative Prisoner’s Dilemma is the collaboration model 
we use to describe the relationships between the nodes. In this 
game, two players choose between cooperation or defection. 
The payoffs matrix of the two actions is shown in Table I. The 
relations between the different possible payoffs follow the rule 
b > c > ε → 0, which poses the dilemma. 

TABLE I.  PAYOFF MATRIX OF PRISONER’S GAME 

Player decision Co-player Cooperate Co-player Defection 
Cooperate b - c c 
Defection b ε → 0 

 
The decision of choosing one or another action can be 

based on the trust in others and their reciprocity. The 
consequences of the participants choices have a different 
impact on the global and local node community, and also on 
the own benefit of the nodes. In our study we evaluate these 
impacts when the decision is based on two approaches: the 
contribution-based and the effort-based strategy. 

Contribution-based Incentive: This approach considers the 
absolute contribution of the requesting node, when the 
requested nodes have to make the decision about whether to 
cooperate or defect. A well-known strategy to maximize the 
payoff when using this approach is the tit-for-tat strategy. 
Using that strategy, a certain node A responds to the request of 
a node B by making the same decision (i.e. cooperation or 
defection) made by B during the last request from A. In the 
case that A and B have not met before, and B has free CPU 
slots, we consider in our simulation that node B is a cooperator 
with 50% probability. 

Contribution-based Incentive with Forgiveness: It is based 
on a variant of tit-for-tat named naive pacemaker incentive, in 
which participants sometimes make peace by co-operating in 
lieu of defecting. The objective of this strategy is to avoid 
being highly harmed by single and/or random defection of 
other co-player. When node B has defected node A during a 
consecutive number of rounds, node A considers him as an 
unknown node; therefore node A will cooperate with B with 
50% probability. This strategy has been used in the preliminary 
study of section II. 

Effort-based Incentive: It is based on the nodes relative 
contribution or effort, defining the contribution as a fraction of 
the resources, instead of the absolute value of the contribution 
itself. In order to evaluate the cooperation process using this 
incentive, we have simulated the effort-based strategy as 
follows: 

For a given round, a certain node A responds to the request 
of a node B assigning to each requested slot a probability of 
cooperation P. The probability P is calculated as the ratio 
between the amounts of CPU slots that B shared with A in the 
last request, and the total amount of CPU slots that B owns. 
Like in the contribution-based scenario, if A and B have not 



met before, and B has free CPU slots, then A evaluates each 
slot with a 50% cooperation probability. 

The idea behind effort-based incentive is to create a 
mechanism which does not harm nodes with few CPU slots in 
a contributory ecosystem. At the same time, the effort-based 
approach also aims to maintain a reciprocity policy similar to 
tit-for-tat.  

The models of contribution-based and effort-based 
incentive strategies were implemented in our simulator. Then 
they were used to understand the advantages and drawbacks on 
cooperation, when nodes use both approaches to play the 
Iterative Prisoner’s Dilemma game. Modifications to the effort-
based approach can be made to take into account additional 
factors (e.g. resources optimization). 

IV. RESULTS AND DISCUSSION 

The simulation results allow us to understand the impact of 
both incentives on a collaborative scenario, considering static 
network topologies and heterogeneous resources distribution. 
The next subsections describe the settings of the simulated 
experiments and discuss the obtained results.  

Four different scenarios were used in the simulations. Table 
II shows their network topology and resource distribution. In 
addition the global results are also shown. The results are 
discussed in the following sections. 

The scenarios are divided into two categories: resource 
scarcity and resource abundance. In scarcity scenarios, the 
amount of resources available is, in average, twice the amount 
requested per node and round. In resource abundance 
scenarios, the available resources are four times the requested 
amount of resources. We assume that these resources will 
never be 100% used, because regarding own tasks, each node 
can perform at most one during a maximum of three rounds. 

A. Metrics used in the simulations 

The simulation results were assessed using the following 
three metrics: cooperation coefficient, percentage of tasks 
satisfied and node success percentage. Next we briefly explain 
these metrics. 

Node Cooperation Coefficient:  It is calculated as the ratio 
between the amount of requested CPU slots and the number of 
positive answers – in term of CPU slots – obtained during the 
simulation, independently if the lent slots were used or not. 
Therefore, it is a measure of the nodes’ willingness to 
collaborate with each other. 

Tasks Fully Satisfied: It is calculated as the ratio between 
the number of tasks that all nodes want to perform during an 
experiment, and the number of tasks effectively completed. 
Therefore, it is a measure of how many tasks get the amount of 
resources needed for their completion. 

Node Success Percentage (NSP): It is calculated as the ratio 
between the number of tasks that a given node wants to 
perform during an experiment, and the number of completed 
tasks. Therefore, it is a measure of the nodes’ satisfaction. 
Notice that unlike the tasks fully satisfied metric, the NSP is 
calculated over each node individually. 

In Table II, the cooperation coefficient shows high 
variations in the minimum and average values, considering the 
contribution-based (tit-for-tat) and effort-based incentives. The 
noticed variation is more important in resource scarcity 
scenarios. In our simulation, the reduction of a 50% in the 
available resources represented a reduction of positive 
responses over 8%. According to that observation, the nodes 
with effort-based incentives are more interested in cooperation 
than nodes with contribution-based incentives. It is important 
to notice that the cooperation coefficient of the nodes does not 
indicate that the whole amount of resources needed to complete 
a task will be acquired.  

The results also show that the value of the tasks fully 
satisfied metric is high when using tit-for-tat strategies. The 
result is coherent with simulation games and strategies where 
nodes rather than requesting evenly to all of their partners, 
make decisions one by one. 

 In order to have a better understanding of these 
phenomena, we compute the Node Success Percentage (NSP) 
that is a direct measure of the nodes satisfaction. Table II 
shows the average, minimum and maximum NSP achieved by 
each of the 125 nodes in the four selected scenarios using each 
incentive. The results reflect the fact that when nodes use the 
contribution-based strategy, the average satisfaction – 
measured as the average Node Success Percentage – is a 6% 
over the satisfaction when they use a tit-for-tat strategy; no 
matter how many resources the system has or which are the 
topological properties of the network. These results are more 
consistent with the cooperation coefficient, and reveal that the 
task success percentage is not a consequence of a high 
cooperation among the nodes. 

B. Impacts on resources utilization 

The results of the first simulations show a trend difference 
between the percentage of tasks satisfied (see Table II) and 
both the cooperation coefficient and the NSP using a tit-for-tat 
strategy. Understanding the reason for this difference is key for 
understanding the effect of the contribution-based and effort-
based incentives. A way to answer this question would be to 
study the impact of different strategies on resources utilization. 

Figure 3 shows histogram with the average distribution of 
CPU slots in the four scenarios executed on a small-world 
topology. Four metrics are utilized: used, shared, free and 
requested CPU slots. 

The amount of used CPU slots represents the number of 
slots that nodes assign to their own tasks, the shared slots 
indicate the slots devoted by a node to tasks of other nodes, and 
the number of free slots represents the slots that are not used. 
Finally, the requested slots show the amount of CPU slots that 
nodes intend to obtain from other nodes. 

In resource scarcity scenarios, the experiment shows that 
when nodes use an effort-based instead of a tit-for-tat strategy, 
they dedicate more CPU slots to tasks belonging to other nodes 
at the expense of their own tasks. This solidarity helps other 
nodes to get all the required resources for their tasks, turning 
the competition on cooperation, and thus increasing the NSP. 
In resource abundance scenarios, this cooperation 
improvement is smaller, and it leads to a high reduction of 



resources that nodes use for themselves. Therefore, it is not 
surprising to observe that the percentage of requests per node 
and round is about 7.5% lower. It is a clear evidence that nodes 
are self-provisioning themselves and do not need others’ 
cooperation.  

Finally, notice that in all cases there is a high amount of 
CPU slots underused by nodes which could contribute to 
increase the value of the metric tasks fully satisfied. That 
happens because both strategies in their decisions consider 
only the previous relationship between the nodes into account. 
Any other factor, such as resource usage or energy 
consumption is not considered at this time. However, it is 

important to point out that in our experiments one benefit of 
the contribution-based strategies compared to effort-based 
strategies is that they achieved a better resource usage (see 
non-free/free CPU slots distribution ratio in Table II). 

C. Impact of node properties and network location 

This simulation shows the results of evaluating the nodes 
behaviors from the locality point of view. The high range 
between the maximum and minimum cooperation coefficient 
and NSP in Table II, in addition to the high number of nodes’ 
CPU dedication in Figure 3, suggest that there exist node 
conditions or topological properties that help some nodes to 
achieve a better satisfaction than others. 

TABLE II.  OBTAINED RESULTS 

Figure 3.  Histograms of average CPU slots requested, used, shared and free on different scenarios involving a small-world topology



Discarding the second reason – since the Torus topology 
shows the same behavior than small-world – we conducted a 
simulation that measures the individual nodes satisfaction in 
different scenarios. Figure 4 shows the NSP achieved by each 
node ordered according to their total amount of CPU slots. The 
experiment has been conducted using a small-world topology 
and 125 nodes in a resource scarcity scenario. In resource 
abundance the results show the same behavioral pattern. The 
results show also two different behaviors, one for nodes that 
have more than 8 CPU slots and another for nodes that have 8 
or fewer CPU slots. In the first case it does not matter what 
strategy they play, because both strategies achieve the same 
NSP. However, when nodes have few slots, the contribution-
based strategy is unfavorable, resulting in a NSP below 20%.  

Contrarily, when using an effort-based strategy, the success 
percentage is between 3% and 70%. This shows that the effort-
based strategy is fairer than contribution-based strategies, when 
they are used in heterogeneous resource sharing scenarios. The 
idea main is to avoid the discriminatory effect shown in Figure 
1. Instead, measuring their relative cooperation willingness 
gives everyone the opportunity to share the same maximum 
value, up to 100%. 

 
Figure 4.  Node success percentage versus node CPU-slots 

Finally, the NSP difference between the powerful and the 
powerless nodes using the effort-based strategy happens 
because the powerful nodes always carry out a task during the 
simulation. Therefore they can never share all their resources.   

V. CONCLUSIONS AND FURTHER WORK 

The aim of this study is to understand different strategies 
for incentivizing a resource sharing ecosystem. We conducted 
a study based on simulations, which compared the impact of 
contribution-based and effort-based incentives on the resource 
sharing process in a scenario of hardware heterogeneity. 
Experiments on different scenarios show similar result trends 
regardless of the overlay network topology used. When an 
effort-based strategy was used, the nodes showed a higher 
willingness to cooperate, no matter how much resources they 
have. However when a contribution-based strategy was used, 
the nodes tended to cooperate only with their equals. 

In global terms, the metric percentage of tasks fully 
satisfied is higher in the contribution-based strategy, because 
the nodes are self-providing the resources they need. This leads 
the system to have a lot of resources underused since the nodes 
do not have enough CPU to share with others. Hence, the 
resource sharing ecosystem becomes an inequality system 
where unique benefiters are powerful nodes that have enough 
resources to do their tasks and only occasionally collaborate 
with others. Collective satisfaction is achieved when most 

nodes are satisfied, although the percentage of success in the 
system is lower. It can only happen when all nodes can be 
equally graded like it occurs in the effort-based strategy. The 
differences between both strategies concern only participants 
with scarce resources. Nevertheless, in effort-based strategies 
the cooperation relationship is fairer, giving powerless nodes 
the opportunity to fulfill their resources needs. 

These results provide a first understanding of the impact 
produced by both strategies on cooperation, when nodes play 
the same strategy. However, in peer-to-peer and volunteer 
computing applications, the participants typically use different 
strategies with different nodes, depending on the parameter that 
they want to optimize and the current situation. The study of 
the impact of system dynamics is part of the future work. 

Another point to address as future work is the neighbor 
nodes information inference. In every experiment we have 
assumed that all participants know the maximum amount of 
resources, i.e. CPU slots of the node that their neighbors can 
share at maximum. This is a strong assumption since it is not 
ease to obtain in real world applications. It is however a critical 
value needed to measure the effort of each node, when it has to 
decide with whom to share some slots. Therefore, our future 
work will be also focus on finding a way to identify the 
maximum resources available in each participant. 
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