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Abstract. There currently are many mobile computing devices with various properties and capabilities. These devices may 
need to collaborate among them to allow nomad workers to perform a common activity. Unfortunately software developers in 
charge of creating infrastructures or applications allowing these devices to cooperate among them, do not count with clear 
guidelines to design such software components; particularly when these components must work in a scenario involving hetero-
geneous devices. This paper presents a study that tries to understand how to address collaboration among heterogeneous mo-
bile devices, by exploring several variables affecting the process. In particular, this study explores various strategies to borrow 
CPU slots from peer mobile computing devices and return the favor back later on. The study outcomes indicate there is a short 
list of computing and network variables affecting the collaboration capability of the mobile devices. These findings have been 
verified using data mining techniques. Based on these findings and the lessons learned, the article presents a simulation method 
of computing scenarios that can help developers to determine which computing configuration would be suitable to be used in 
each particular work scenario. Software designers can take advantage of this simulation method and the design guidelines re-
ported in this paper in order to develop applications able to work appropriately in heterogeneous computing scenarios.  
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1. Introduction 

The computing and communication capabilities of 
mobile computing devices improve everyday. The 
cost reduction of these devices makes them accessi-
ble to most people, and their use opens new opportu-
nities to perform computer-supported mobile collabo-
ration. This collaboration type involves nomad users 
with mobile devices and a software system to per-
form on-demand interactions [32]. For instance, the 
interactions among medical personnel at a hospital 
[27] or the incidents discussion conducted by con-
struction inspectors after reviewing building facilities 
[30]. Typically small devices (e.g. handhelds) are 
well prepared to support tasks involving high mobili-
ty [12]; however they are the most critical resource in 
these scenarios. Despite improvements on their per-
formance, they still have significant hardware limita-

tions (e.g. in computing power and memory capacity) 
to conduct non-trivial collaboration activities. These 
limitations could influence a user to not perform a 
specific task. Alternatively, if the user performs the 
activity without having the right hardware resources, 
then the activity could fail and the participants would 
get disappointed even in the case the collaborative 
system provides outstanding services. Thus, the suc-
cess of a mobile collaboration is also dependent on 
the characteristics of the supporting devices [12]. The 
lack of guidelines to deal with this challenge pushes 
developers of these solutions to constrain the type of 
devices that can be used to run a certain application. 

The approach proposed in this article is an alterna-
tive to that solution. We assume the work scenario is 
naturally heterogeneous in terms of computing de-
vices, and the key is to take advantage of that fact 
when designing mobile collaborative applications. 



Trying to find a solution for managing the devices 
heterogeneity and the hardware resources limitation 
of handhelds, we have seen the opportunity to use the 
volunteer [40] and public-resource computing con-
cepts [3] for encouraging users to share their hard-
ware resources. Thus, it is possible to perform non-
trivial collaboration processes among mobile workers, 
even including those with less hardware resources.   

The proposed solution creates decentralized col-
laboration networks, where mobile nodes (i.e. the 
device of a mobile worker) can share part of their 
hardware resources (e.g. processing power) during a 
given time to help other nodes. Thus, a user requiring 
extra hardware resources to perform a collaborative 
activity could take advantage of the resources availa-
ble in their teammates’ devices. As a counterpart, 
these nodes can claim the favor back when needed.    

This article presents a study of the collaboration 
process in a heterogeneous scenario, where handheld 
devices are combined with PCs in several ways. The 
interactions among these devices are supported by an 
overlay network; i.e. a virtual network built over a 
physical one [4].  

This study also explores the advantages and disad-
vantages, in terms of cooperation level and users’ 
satisfaction, of having a heterogeneous computing 
scenario. The resources sharing proposal has been 
evaluated using simulations for several application 
scenarios. CPU units are considered as shareable 
resources to simplify the simulations, but in fact they 
can be any other hardware resource or peripheral; e.g. 
memory, or time units of a GPS or a Webcam. 

Based on the study results we present a set of 
guidelines for designers of mobile collaborative ap-
plications. Integrating these guidelines in the design 
of the application encourages users to collaborate and 
share their extra computational resources. 

Since software designers need to determine, at an 
early stage of the development process, the alterna-
tive solutions to deal with the devices heterogeneity 
in a particular work scenario, this article proposes a 
simulation method based on the study findings. This 
method can be used not only to determine alternative 
solutions but also to validate the suitability of already 
implemented systems when they are used in a specif-
ic heterogeneous computing scenario. 

Next section describes the problem to address and 
the research questions of this study. Section 3 pre-
sents the related work. Section 4 describes the exper-
imentation setting. Section 5 presents the obtained 
results and its discussion. Section 6 shows the use of 
data mining analysis techniques to identify the im-
pact that several variables have on the collaboration 

process. Section 7 shows the lessons learned. Section 
8 describes the simulation method that can be used 
by software designers to identify or validate possible 
solutions. Section 9 provides guidelines to deal with 
resource-sharing issues affecting the collaboration 
process. Finally, Section 10 presents the conclusions. 

2.  Problem definition 

Various questions arise when we try to analyze the 
collaboration support provided by several overlay 
network topologies involving heterogeneous hard-
ware devices; e.g. under which conditions handheld 
devices are able to share resources with others? What 
additional resources are needed to encourage collabo-
ration among them?  

The definition of a set of relevant research ques-
tions will clarify the impact of several network to-
pologies on heterogeneous work scenarios. In partic-
ular, it is interesting to study the introduction of 
powerful devices in a mobile distributed network, 
which would probably change the network behavior. 
Therefore the first research question to be addressed 
is the following one:  

Research Question (RQ) 1. Does a mobile col-
laboration scenario need extra resources (obtained 
from other powerful devices) to reach the target co-
operation level among the users? 

If the answer is yes, and new resources are re-
quired by the network, a new question arises:  

RQ 2. Which effects are caused by the introduc-
tion of such powerful devices on the cooperation 
strategy or behavior of handheld devices? 

Various related works [8, 24, 28, 38] show the 
network topology characteristics play a role in col-
laboration, and that it can also encourage and pro-
mote cooperation if certain conditions are present. 
Thus, we not only expect that introducing powerful 
devices in the network will promote collaboration, 
but also we believe the collaboration level is highly 
dependent on network topology and on node distribu-
tion. Consequently, a third research question arises: 

RQ 3. Are the topologies used to support collabo-
ration in various fields (e.g. game theory, neural 
networks, file sharing) applicable to resource shar-
ing on a mobile collaboration scenario?  If answer is 
yes, then does the network size affect node behavior? 

Barabasi’s studies [5] describe a common behavior 
pattern, named “networks undergo phase transition”, 
that is found in the nodes of a real or artificially cre-
ated graph that are “socially related”. This phenome-



non means that when a given threshold is reached, all 
the network nodes undergo a transition phase when 
they start acting as a single entity. Thus, the network 
properties are shared among all the nodes. This al-
lows us to formulate a fourth research question:  

RQ 4. Do mobile devices follow the phase transi-
tion pattern during the resources sharing process?  

Finally, it would be interesting to know if the 
nodes placement strategy can be used to help im-
prove the collaboration among the network nodes. It 
gives us a fifth research question: 

RQ 5. Is the nodes placement strategy a variable 
that can be used to improve the nodes cooperation? 

These research questions are not relevant in some 
work scenarios like cloud computing, where the col-
laborative applications have no visibility or control 
on the network topology. Therefore the nodes cannot 
take particular actions, e.g. increasing the network 
degree, to improve the collaboration them. 

3.  Related work 

The collaboration problem among disperse units is 
present in several areas, such as electrical engineer-
ing, electronics and transportation. For example, 
Ponci et al. [33] propose a context-aware multi-
agents framework to dynamically manage energy in 
complex power systems that involve heterogeneous 
components and limited resources. Marti et al. [25] 
present a similar solution to manage the traffic on a 
road network when there appear meteorological 
problems. Raveendranathan et al. [36] introduces the 
concept of virtual sensor, which is composed of body 
sensors that cooperate to provide specific services in 
several application domains. Calafate et al. [6] pro-
pose a robust and efficient broadcast-based content 
delivery system for vehicular networks, where the 
nodes cooperate to minimize the content delivery 
time. A similar proposal was presented by Kim et al. 
[20] to minimize the energy consumption during the 
management of wireless sensor networks. 

As previously mentioned, our approach to deal co-
operation among the network nodes is based on the 
use of volunteer and public-resource computing. The 
volunteer computing concept [40] proposes an inter-
esting idea to share hardware resources among devic-
es belonging to a peer-to-peer network. However, it 
has well-known limitations generated by the network 
architecture [9]. Particularly, many nodes (known as 
free-riders) become selfish and strive to maximize 
their own utility, by exploiting the system without 

contributing to the community. Mitigating this effect 
requires to introduce incentives to encourage the 
nodes to collaborate with each other.  

Some service architectures (e.g. SOA and SODA 
[10]) and service protocol specifications (e.g. OASIS 
Web Services Discovery and Web Services Devices 
Profile [29]) deal with several aspects regulating the 
interaction among nodes in heterogeneous scenarios. 
However, such solutions do not impact the collabora-
tion capability of the nodes, e.g. to share resources. 
Thus, using a solution to enhance the node capability 
for interaction is as important as using a strategy to 
promote collaboration among the participating nodes. 
In that sense this paper addresses just the strategies to 
enhance collaboration. 

A well-known mechanism designed to cope with 
the free-riding problem is the tit-for-tat repayment, 
which is a direct reciprocity scheme [28] used by 
peer-to-peer file-distribution tools, e.g., BitTorrent 
[35]. In tit-for-tat every node collaborates or not with 
another one, depending on the last action taken by 
the latter (i.e. it generates reciprocity actions). 

Another approach to deal with the collaboration 
problem comes from the heuristics used to place re-
sources in a network in order to reach a certain rout-
ing objective. This objective may be, e.g., to improve 
resiliency or performance of a routing protocol [37].  

Although these proposals have shown to be suc-
cessful, they consider all nodes as similar in terms of 
features and capabilities. Therefore they cannot be 
directly used to address cooperation in heterogeneous 
scenarios. Moreover, such proposals consider a net-
work with stable topology, which is not representa-
tive of mobile collaboration scenarios. 

Several approaches have been used to study the 
impact of overlay network topologies on the coopera-
tion process; for example to analyze the topology 
properties in real-world applications with a good co-
operation level. In that sense, Iamnitchi et al. have 
studied the patterns and properties of network topol-
ogies in file sharing applications [23], and Lozano et 
al. have studied them on email systems [24]. The 
topologies used in our study are based on these last 
two works. 

Another approach to deal with the problem of 
sharing resources among distributed nodes was pro-
posed by Feldman et al. [11]. They showed the pro-
portional-sharing mechanism achieves a balance of 
high efficiency and fairness degree at the equilibrium. 
However, this approach is complex to implement in a 
decentralized way with only local information.  

Nowak studied properties of network topologies 
for encouraging cooperation and proposed mecha-



nisms for cooperation evolution based on natural 
selection [28].  

Studies by Cassar [8], Santos et al. [38] and Loza-
no et al. [24] also show the potential impact of the 
network topology on the cooperation process. Our 
study basically differs from these previous ones be-
cause we model the heterogeneity and limitations of 
computing devices. This study also takes into ac-
count the overlay network characteristics (e.g. the 
clustering coefficient and the degree distribution) and 
the placement of devices within the network. 

Like these related works, we have limited the 
study to the ideal environment for the nodes behavior. 
We then do not take into account other computational 
effects or drawbacks like load and task balancing or 
allocation. We do not take the nodes mobility into 
account either, but we consider changes in the net-
work topology. Simulating mobility of real-world 
nodes is a complex task [39], which should be ad-
dressed once the effect produced by the other net-
work features has been understood. This study used 
data mining techniques to understand the process of 
collaboration among nodes and even to predict it.  

4. Experimentation setting 

All experiments of this study were done with a 
network simulator, because the tests can be repro-
duced and also the variables to be studied can be iso-
lated. Each experiment included simulations per-
formed over a discrete scenario with 250 rounds. 
Previous experiments by Vega [41] have shown this 
number of rounds is enough to obtain significant sta-
tistical conclusions after discarding the first fifty 
transitional rounds. In the time-based simulations, 
however, these 50 first rounds are included.  

In the experiments, the nodes played a version of 
the Prisoner’s Dilemma game [34] in which each 
participant plays the game against all neighbors and 
no one knows the total number of rounds of the game. 
Each node follows with the same probability a tit-for-
tat strategy to decide which action to take. 

The simulation process starts by loading a non-
weighted topology graph, which is artificially created. 
It continues with the setting of the variables that rep-
resent the environmental conditions. Then, the simu-
lations are executed with only one independent vari-
able, assuring thus that the results reflect the impact 
of just such variable. Finally, the results are gathered 
after running a large number of simulations. 

The simulations validation is performed using two 
techniques (1) checking internal simulator invariants 
and (2) performing preliminary simulations with test-
ed data and known results. This validation is reported 
in [41]. The preliminary validation tests were made 
on small network topologies and their results can be 
verified with mathematically known solutions.  

This section describes the network topologies used 
in experiments, and the variables influencing system 
behavior. Moreover, the algorithms, metrics and node 
game strategies used in this study are also described. 

4.1. Network topologies 

It has been shown there are some topological pat-
terns and graph characteristics promoting cooperation 
among the nodes in real world networks [23, 24]. The 
topologies selected for our study include are the most 
commonly used to promote collaboration (Fig. 1): 
torus, random, power law and small-world. These 
topologies are briefly explained below. 

 

 

Fig. 1. Network topologies used in the study. 

Torus: This topology involves an N-dimensional 
torus, defined as the Cartesian product of N rings. 
Symmetric torus topologies are built from rings of 
the same length. A constraint is that the number of 
nodes must be DN, where D is the number of nodes in 
the ring. Under uniform traffic circumstances, torus 
topologies have the advantage of providing a bal-
anced use of the network resources. A symmetric 
torus improves the mesh by connecting the head node 
with the tail node in each row and column. Thus this 
topology eliminates the edge effect. 

Random: The Waxman's probability model for in-
terconnecting nodes [7, 43] was used to build a ran-
dom network topology based on Erdős–Rényi model. 



It was done using the BRITE topology generator [26]. 
Edges are introduced  between  pairs  of  nodes  u, v 
with a probability that  depends  on the  distance  
between  them.  The {u, v} edge probability is: 
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where d(u,v) is the Euclidean distance from node u to 
v; a is the probability of edges between any vertex in 
the graph and controls the average degree of the net-
work, b is the ratio between long and short edges and 
L is the maximum distance between vertices. Wax-
man parameters are chosen with default generator 
values a = 0.15, b = 0.2; and L = 1.000.000 is select-
ed to represent a square surface of side 7.071 points 
long. As nodes are distributed uniformly random 
along the surface, d(u,v) is our random variable [0, L]. 
Thus, the Waxman model generates networks with 
lower variability of nodes degree and smaller diame-
ter size than other Internet topology generators [43]. 
The model also has an exponential clustering coeffi-
cient distribution, independent of network size which 
is representative of most random graphs. 

Power law: In this topology, a small number of 
nodes act as hubs (having a high degree), while most 
nodes have a low degree. Our power law network 
was created using Barabasi’s algorithm and imple-
mented using the BRITE topology generator. Ac-
cording to the incremental growth of the nodes’ pow-
er degree, the probability of interconnecting a new 
node u with node v belonging to the network –the {u, 
v} edge probability– is given by: 
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where dv is the current degree of node v to which 
node u would be attached, V is the set of nodes which 
joined the network. The lower term is the sum of out-
degrees of nodes that previously joined the network. 

Small-world: Two characteristics distinguish this 
topology from other kinds of networks: (1) there is a 
small average path length between each couple of 
nodes and (2) there is a high clustering coefficient 
which is independent of the network size.  

Table 1 summarizes the main characteristics of the 
used network topologies. Their properties allow us to 
evaluate the effects on the cooperation process. The 
topological metrics used are the following: degree 
distribution, average path length scalability, and 
clustering coefficient scalability. 

 
Table 1 

Topology properties 

 Degree 
distribution 

Average path   
length scala-
bility 

Clustering 
coefficient 
distribution 

Torus Constant O(N) Constant 

Random  Low variabil-
ity O(Log N) Exponential 

Power law Power law O(Log log N) Power law 
Small-world Heavy-tailed O(Log N) High variability 

 
� Degree distribution. The degree of a node in a 

graph is the number of arcs connecting to other 
nodes. The degree distribution is the probability 
distribution of these degrees on the whole topology. 

� Average path length scalability. The average path 
length (APL) is the average number of hops be-
tween each pair of graph nodes using their mini-
mum path. The APL scalability shows dependency 
between the APL and the network size (N). 

� Clustering coefficient scalability. The local cluster-
ing coefficient of a node in a graph is the propor-
tion of vertices of the node to the number of all 
possible vertices. The clustering coefficient distri-
bution is the probability of these coefficients in the 
whole network. 

4.2. Modeling the network nodes 

Each computing device was modeled as being of 
one of two types: (1) handhelds: smartphones or sim-
ilar, and (2) PCs: laptops/desktop PCs or similar. A 
more detailed classification can be done to get more 
accurate results, but this classification is enough to 
understand the main issues affecting cooperation.  

These devices were modeled as having only one 
resource to share and use, namely their CPU slots. 
The relation between the CPU speed of handhelds 
and PCs used in the simulations was based on tests 
done to typical commercial products. We consider a 
ratio of 1:5 between the processor speeds of these 
devices. Consequently, we also consider handheld 
devices are nodes having up to 3 CPU slots to use or 
share, while PCs have up to 15 slots.  

Each resource request has two parameters: (1) the 
number of CPU slots required by the requester, and 
(2) the number of rounds for which the requester 
needs those resources. Both parameters have a max-
imum allowed value that was defined to assure a 
minimal quality of service to the nodes.  

The maximum number of CPU slots per request 
was set to 10. Besides, the maximum number of 



rounds to request a resource was established in 3. 
This is a simplified model, but more complex task as 
workflow executions [13] can be modeled in a simi-
lar manner. Since each simulation had 250 rounds, 
which allow us to generate an important number of 
interactions among nodes and thus we can study the 
network behavior under several conditions. 

The prisoner’s dilemma (PD) [34] was the collabo-
ration strategy used to study the relationships be-
tween the nodes behavior for the previously present-
ed topologies. In this game two players choose be-
tween cooperation or defection. The payoffs for the 
two actions are shown in Table 2. 

 
Table 2 

Payoff matrix of the prisoner’s dilemma 

 Player decision Co-player 
Cooperate 

Co-player Defection 

 Cooperate b - c C 
 Defection b ε → 0 

 
The relations between different possible payoffs 

follow the rule b > c > ε → 0, which immediately 
poses the dilemma: if cooperation is costly for the 
individuals and it benefits only the interaction part-
ners, then Darwinian selection should favor non-
cooperating defectors and eliminate the cooperators. 
This leads to a highly inefficient outcome compared 
to the results obtained by two cooperators. 

The decision of choosing a collaboration strategy 
must be based on the trust in others and their reci-
procity. An interesting scenario for the collaboration 
process is the one where two or more nodes play 
more than one PD round. In that case, the nodes 
know the intentions of others and all become only 
partially anonymous. A common strategy to maxim-
ize the payoff is the tit-for-tat strategy. In this strate-
gy and for a given round, a certain node A responds 
to the request of a node B making the same decision 
(i.e. cooperation or defection) made by B during the 
last request from A. As a result, tit-for-tat optimiza-
tion consists in not being harmed, but rather benefit-
ed, in comparison with other players. 

4.3. Metrics for resources-sharing evaluation 

The metrics used in this study were selected main-
ly taking into account the handheld features, because 
they are the most limited devices. However these 
metrics are also applicable to PCs.  

One such metric was the Node Success Percentage 
(NSP). The NSP of a node is defined as the ratio of 
the satisfied requests to the total of requests made by 

the node. The average NSP of all the network nodes 
is the cooperation coefficient for that topology.  

The second metric we used is the Node Acceptance 
Percentage (NAP), which is defined as the ratio of 
CPU slots that the node is willing to share to the CPU 
slots requested by the node. The average NAP for all 
nodes of the same type in the network represents the 
cooperation willingness of that type of node.  

4.4. Algorithm of a collaboration round 

We describe below the game algorithm played by 
the network nodes during a collaboration round. This 
algorithm includes four stages [41]: request, response, 
evaluation and closing. 

Request stage: Each node that itself has no pend-
ing tasks creates a new request with a 50% probabil-
ity of success. First, the node does a self-request for 
the number of CPU-slots that it needs. However, if its 
own resources are not enough to complete the task, it 
sends the number of unitary requests needed to ac-
complish the task to the neighboring nodes. 

Response stage: The strategy to address the re-
sponse process is simple. Each node having the re-
quested resources responds affirmatively to its own 
requests. Then, each node that has received a request 
from other nodes decides whether to share or not its 
resources following a tit-for-tat policy. Thus, a node 
v will respond affirmatively to a resource request if 
the node has free CPU-slots, and also if the request-
ing node (u) is a cooperator. Considering node u as 
cooperator means that such node must have respond-
ed affirmatively to the last request from node v. If u 
and v have not met before and the free CPU-slots 
condition is accomplished, then node v is considered 
cooperator with 50% of success probability. 

Evaluation stage: Each node evaluates its own af-
firmative responses and assigns CPU-slots according-
ly. Then, the nodes evaluate the affirmative responses 
from other nodes and randomly discard all the excess 
of offered CPU-slots. Finally, the nodes compute the 
number of affirmative or negative responses and con-
sider that for the next tit-for-tat decision. 

Closing stage: Each node computes pending tasks, 
taking into account the remaining time for each task, 
updates its status by removing messages and by cal-
culating statistical data from the previous round. 



5. Obtained results 

The simulation results allow knowing the range of 
values that can be found in mobile collaborative sce-
narios for various topologies and network parameters. 
These results also give further insights for answering 
the RQs stated in Section 2. The next subsections 
describe the settings of the simulations, the obtained 
results and the conclusions of their analysis. 

5.1. The impact of introducing powerful nodes  

The simulations show the effect of introducing 
PCs on a mobile collaborative network, when the 
nodes play a PD game using a tit-for-tat strategy. Fig. 
2 shows the cooperation coefficient (average, maxi-
mum and minimum) achieved by handheld devices 
on the four topologies considered in this study.  

 

Fig. 2. Cooperation coefficient of handheld devices using four 
network topologies and five PCs ratios. 

The simulation also considers several ratios of 
handhelds and PC. They are represented in the X axis 
(Fig. 2) as % of handhelds / % of PCs. For example, 
the first dataset was obtained with a network of 1000 
nodes that had 20% of handhelds and 80% of PCs. 

In every simulation (unless otherwise stated), the 
devices were randomly placed on the network with-
out following any particular topology pattern. 

Fig. 2 shows minor variations in the maximum 
values of the cooperation coefficient between net-
works nodes, when considering various handhelds vs. 
PCs ratios and also network topologies. The varia-
tions are important when the network is composed 
just by handheld (i.e. a 100/0 ratio). In that case the 
average values of the cooperation coefficient are con-
siderably lower than in the other network configura-

tions. These results help us to answer RQ 1, showing 
the introduction of PCs improves the level of cooper-
ation among nodes, regardless of the network topolo-
gy. PCs increase the number of resources available in 
the network providing thus more collaboration capa-
bility to handheld devices. 

Although the maximum value obtained for the co-
operation coefficient is close to 100% even when 
there are 20% of PCs, the minimum value decreases 
with the percentage of powerful devices. Additional-
ly, the effect of increasing the number of PCs im-
proves the minimum value of the cooperation coeffi-
cient in the network. We can see that there is almost 
no improvement in such minimum value (less than 
7%) after introducing more than 60% of PCs. 

These results show it is possible to improve the 
cooperation coefficient of the handhelds in a mobile 
resource-sharing scenario by introducing new re-
sources in the network. We used standard statistical 
methods to compute the confidence interval and mar-
gin of error [31] of the values. The standard error of 
the mean values is at most 0.055. The relative margin 
of error for the mean is at most 12.02% for a 95% 
confidence level. Thus we can consider the average 
values computed on this test set are valid. 

Comparing the same topology with different ratios 
we have seen that there were statistically significant 
differences between means determined by one-way 
analysis of variance, ANOVA (F(4,366) = 2.396, P = 
2.49E-60). Therefore, we think the observations and 
conclusions based on this test set are also valid. 

5.2. The impact of introducing powerful nodes and 
the tit-for-tat game strategy 

Although the two types of nodes considered in this 
study play the same game and follow the same strat-
egy, there is no guarantee that they will have the 
same behavior or obtain the same cooperation values. 

Fig. 3 represents the average willingness of a node 
to cooperate with other nodes of its community. This 
simulation included 1000 nodes arranged according 
to the four chosen topologies. The network was com-
posed of 60% handhelds and 40% PCs, and it had an 
average degree equal to 6. 

Moreover, we also ran the same experiment but 
with the cooperation willingness calculated taking 
into account the tit-for-tat strategy and unlimited 
available CPU slots for the participating nodes. The 
“limited” and “unlimited” tags, respectively, differ-
entiate these simulations. The difference in the re-
sults shows that the cooperation willingness from the 



nodes does not correspond to their real willingness, 
due it is influenced by their resource limitations. 

 

 

Fig. 3. Cooperation willingness of powerful and handheld devices 
with limit/unlimited neighbor resources. 

These results help us to answer RQ 2, indicating 
that the cooperation willingness decreases with de-
creasing availability of CPU slots. Thus, this limita-
tion affects mainly handheld devices. 

Since PCs have many more CPU slots available 
than handhelds, the difference in the willingness of 
PCs to cooperate is lower (between 2.96% and 3.9%) 
than handhelds, independently if we consider limited 
or unlimited CPU slots. Typically, PCs are self-
served although the resources are scarce for 
handhelds. Therefore such a situation considerably 
degrades the cooperation coefficient of the network: 
for non-torus topologies it is more than 50%.   

These results show that introducing powerful de-
vices to the network and adding some limitations that 
did not originally exist in the PD game, have a con-
siderable impact on simulation results. In spite of 
having several handhelds willing to cooperate, many 
of them finally do not share their resources due to the 
limited number of available CPU slots. 

The series in Fig. 3 correspond to the sample mean 
of the test sets. The standard error of the mean values 
is at most 0.005. The relative margin of error for the 
mean is at most 1.61% for a 95% confidence level. 
Therefore, we can consider these values as valid. 

Comparing the cooperation willingness values for 
limited and unlimited handheld devices, we can see 
that there are statistically significant differences be-
tween means determined by t-test (unpaired samples 
and unequal variances), when U = 1.33E-26 < 0.05. 

If we compare the cooperation willingness results 
on unlimited handheld devices for the four topologies, 
we also can see statistically significant differences 

between the means determined by a one-way analysis 
of variance, ANOVA (F(3,996) = 2.614, P = 6.45E-
25). Thus, these observations can be taken as valid. 

5.3. Impact of using several network topologies 

This simulation scenario is the same than the pre-
vious one, but in this case the observed variable was 
the Cumulative Distribution Function (CDF) of the 
requests failure percentage of handheld devices. This 
CDF value represents the percentage of nodes that 
keep a certain defection level when trying to collabo-
rate with the neighbors. The X axis in Fig. 4 repre-
sents the percentage of requests that failed because 
the potential collaborator had no available CPU slots 
for sharing. The curves shown in Fig. 4 indicate for a 
given percentage of failure, the percentage of re-
questing nodes having these failures, e.g., in a net-
work with a torus topology, 60% of the failures occur 
to just 5% of the requesting nodes.  

The simulation results are analyzed below in three 
different areas: (1) below 40% of failure percentage, 
(2) from 40% to 80% and (3) above 80%.  In the first 
area, there is a linear increase of the network nodes 
affected by the failed requests; i.e. up to 40% failure 
in the requests, the number of affected nodes grows 
almost linearly. This means all topologies, but partic-
ularly random, are well-influenced by topological 
properties and potentially the network can achieve 
better node success percentage (NSP). 

 

 

Fig. 4. CDF of the failure percentage of handheld devices. 
 
In the second area, the torus CDF grows faster 

than in other topologies. In the case of the power law 
topology, the CDF does not grow as much as in other 
topologies, which indicates that there are many un-
derused resources. This resources underuse clearly 
negatively affects the cooperation rate among nodes. 



Finally, the third area analyzes the random and 
small world networks. The first one has almost a 
20% of their handhelds with an NSP lower than in 
the small-world, even if the neighbors of the re-
quester node have CPU slots available. In small 
world, the distribution is similar than a torus network. 

Fig. 4 also shows a local point of view of coopera-
tion among nodes and it allows us to decide among 
various topologies without considering the effect of 
the game played by the nodes and the cooperation 
strategy used by them. Based on these results, the 
recommendation is to consider the small-world to-
pology as the best one. Its minimum failure percent-
age is not as good as random topology –and not as 
bad as power law–, but its distribution is somehow 
similar to that of the torus topology. These results 
answer RQ 3 indicating the studied network topolo-
gies produce different impacts on the collaboration; 
thus some topologies are more suitable than others.  

5.4. A network undergoing phase transition 

This simulation intends to identify whether 
Barabasi's phenomenon [5] can be found in heteroge-
neous networks during resources sharing (RQ 4) or 
not. In order to do that we ran a complete set of simu-
lations, which involved four network sizes (5000, 
1000, 500 and 100 nodes) and the four selected net-
work topologies. The ratio of handheld was kept at 
60% and the nodes degree was kept at 6. The ob-
served variable was the node success percentage 
(NSP). After running 250 rounds we computed, for 
each node in the network, the number of rounds in 
which such a node made a collaboration request, di-
vided by the percentage of success obtained by those 
requests (Fig. 5).   

 

 

Fig. 5. Node success percentage vs. number of collaboration re-
quest rounds.  

The results indicate that the “undergo phase transi-
tion” phenomenon can be found in heterogeneous 
networks, where almost all the nodes have coopera-
tion coefficient around two values: 50% or 100%.  

It is interesting to note that the PCs behave as ex-
pected; i.e. they introduce new resources to the net-
work, thus helping handhelds but without being 
harmed by the system and getting around 50% of 
cooperation in all cases. Instead, the handhelds coop-
eration is distributed from 12.5% to 100% of NSP. 

The results shown in Fig. 5 imply that handhelds 
can be divided into two groups: “aggressive” and 
“moderate”. When handhelds act aggressively, they 
perform a higher number of requests –equivalent to 
PCs in number– and their cooperation coefficient 
falls below 50% –the same achieved by PCs–. This is 
caused in part because handhelds do not have availa-
ble resources equivalent to their requests, and thus 
their requests frequently fail.  

Moderate handheld devices –those that make few-
er requests than PCs –are not harmed because the 
number of requested CPU slots is equivalent to the 
number they offer to others.  These two behaviors of 
handhelds generate two different NSP distributions 
(Fig. 5) and they cause the presence of a “network 
undergoes phase transition” phenomenon.  

Fig. 5 also shows that a relevant collaboration pro-
cess starts just when at least 50% of the requests are 
positively answered. Then, the percentage of nodes 
involved in a collaboration process remains stable 
until the cooperation coefficient goes over 85%.  

5.5. Impact produced by the network size 

This section shows the results of evaluating char-
acteristics related to network size, which allows us to 
know whether or not this feature produces changes in 
the system behavior. It also helps us to address the 
second part of RQ 3. 

The impact of network size is related to two net-
work parameters: the nodes’ degree and the number 
of nodes in the network. We have kept the average 
degree constant and have modified the number of 
nodes, which allows us to study network size impact. 

Like the previous tests case, this simulation in-
volved random networks with four sizes: 5000, 1000, 
500 and 100 nodes. The network degree remained at 
15 and the percentage of handheld was 60%. 

It seems reasonable to argue that if a node only in-
teracts with its neighbors and if the network size in-
creases without changing the average nodes degree, 
then the node behavior should not change. However, 
the results shown in Fig. 6 demonstrate that there ex-



ists a propagation effect between nodes that modifies 
their behavior linearly with the network size. Small 
networks assure a high minimum cooperation level 
among handhelds, but these networks require that an 
important number of nodes be willing to collaborate.  

 

 
Fig. 6. CDF vs. Node success percentage of handheld devices. 
 
From the network size point of view, the decisions 

of each node have a different impact on the global 
results. The larger the network is, the more willing 
will be the node to share its resources. Thus, the glob-
al cooperation willingness improves as expected.  

Fig. 6 also shows three different patterns of behav-
ior for CDF values. This behavior, particularly the 
stationary values, can be explained by the networks 
undergo phase transition phenomenon, explained in 

Section 2. It supports the results shown in section 5.4 
which helped us to answer RQ 4. 

Fig. 7 shows the network size effect from the point 
of view of nodes behavior. It depicts the histogram of 
CPU slots dedication on both types of devices on a 
random topology with 60% of handheld devices and 
two different network sizes: 125 and 1000 nodes. The 
average network degree was kept at 6. 

On the 125 nodes network, both types of devices 
have a high percentage of free CPU slots. This effect 
is justifiable because the tit-for-tat game strategy gets 
the fairest price for the shared resources. However, it 
is a clear example of underused resources on the sys-
tem. Moreover, when we increase the network size, 
both systems reduce the number of free CPU slots in 
order to share more. A notable consequence is that 
handheld devices become fairer as the difference 
between shared and used resources becomes smaller. 

Another effect is that PCs brake their balance be-
tween shared and used CPU slots, in favor of increas-
ing the resources for sharing, which reduces the 
number of requests. Therefore, the PCs not only keep 
the cooperation coefficient at 50% (Fig. 5), but also 
they also are more willing to help handheld devices. 

These observations allow us to answer the second 
part of RQ 3 indicating that network size clearly af-
fects the collaboration strategy used by handhelds, 
and thus it affects the whole system. The next sub-
section analyzes the potential relationship between 
nodes degree and node success percentage (RQ 6). 

 
 

Fig. 7. Histograms of average CPU slots requested, used, shared and free on random topologies.  



5.6. Impact produced by the nodes degree 

A simulation was performed to identify the impact 
of nodes degree on the success percentage of collabo-
ration requests. It was done with a network of 5000 
nodes, with 60% of PCs, and random, power law and 
small-world topologies. Two average values for the 
network degree were used: 15 and 35. The observed 
variable was the CDF of the handheld nodes success 
percentage. Fig. 8 shows that the cooperation coeffi-
cient is inversely proportional to the network degree, 
which allows us to answer RQ 5 and RQ 6.  

 

 

Fig. 8. CDF vs. node success percentage of handheld devices. 

This result reflects the fact that tit-for-tat positive 
decisions are fast in being flooded through the net-
work. Consequently, we can affirm that the nodes 
connectivity also contributes to trigger a “networks 
undergo phase transition”. Finally, it is interesting to 
point out that the phase transition effect cannot be 
generalized to all topologies because, at least, it is 
dependent on the network degree.  

6. Analysis of results using data mining techniques 

Features selection is an important step when da-
tasets have many variables and correlated data. For 
an efficient identification of structures with data min-
ing techniques, it is needed to evaluate and determine 
the variables in the data set that contain valuable in-
formation [19]. Determining subsets of a reduced 
number of features, e.g. with machine learning tech-
niques, is another way to identify efficiently proper-
ties in data sets [2]. The feature subset selection in 
particular is a method for enhancing the performance 
of data mining algorithms by reducing the variables 
search space [14]. With this analysis we intend to: (1) 
identify a short list of features to understand re-

source-sharing processes in a mobile scenario, and 
(2) evaluate each feature algorithmically using some 
well-known feature ranking algorithms. 

We create our own datasets for this analysis. The 
datasets are composed of all requests, responses, NSP 
and states of each node, round by round. As was pre-
viously mentioned, each simulation included 250 
rounds. Over 100 simulations were run by combining 
the features previously explained; i.e. the four select-
ed topologies, with the five ratios of handhelds/PCs 
and to the four network sizes. 

6.1. Features set 

Choosing an appropriate feature set is the most 
critical part of any machine learning algorithm. We 
have followed the steps and recommendations pre-
sented in [14] to choose the appropriate feature set 
and analyze it. Although there are techniques and 
algorithms to construct this feature set, we have cre-
ated a set of "ad hoc" features because the data do-
main is already known to us. 

Understanding the resource-sharing process re-
quires identifying features that represent the system 
components, particularly the devices, topologies and 
node proximity. The feature dataset describing these 
system components is typically obtained by aggregat-
ing their individual features. An aggregation function 
is required to combine the feature values for obtain-
ing a whole dataset that is going to be analyzed.  We 
have named device features the dataset that repre-
sents the network nodes. The relationship among 
nodes has been captured in a dataset called proximity 
features. Finally, the network topology was repre-
sented through the topological features dataset. The 
features selected to create each of the mentioned da-
tasets are presented below.  

Device features: 

� CPUs. This feature indicates the available CPU 
slots (i.e. resources) that the device has for using 
and sharing. This feature is intended to embed the 
fact that a device with more CPU slots is more 
likely to share resources. 

� Device type. This feature represents the type of 
device; i.e. handheld and PC. It is similar to the 
CPU feature, but instead of being a numeric value 
it has a nominal one. 

� Request rounds. It indicates the number of rounds 
in which a device has requested CPU slots to other 
nodes. Since this feature is the denominator of the 
NSP metric, it seems reasonable that the NSP val-



ue of a node depends on the number of request 
rounds in which that node has participated. 

� Needed CPUs. This feature is the number of extra 
CPU slots (i.e. CPU slots from neighboring nodes) 
required for a node to perform a specific task.  

Topological features: 

� Topology. This feature represents the type of net-
work topology: torus, random, power law and 
small-world. The simulation results have shown 
that the devices behavior (i.e. the collaboration co-
efficient) depends on the network topology. 

� Network size. It indicates the number of nodes 
composing the network. The results shown in Sec-
tion 5 indicate that the devices behavior also de-
pends on the network size. 

� Clustering coefficient. The clustering index 
measures the local density of nodes in a network. 
Other researchers have reported that nodes in a 
dense area are more likely to share resources com-
pared to those located in a sparse area [1, 24].  

� Degree. This feature is the connectivity of a node 
and it is intended to measure the fact that a more 
connected node is more likely to share resources.  

� Neighbors’ degree. This feature represents the ag-
gregated degree values of the neighbors of a cer-
tain node. While the connectivity of a node is sig-
nificant, the connectivity of its neighbors some-
times also plays an important role. When nodes 
have many neighbors, it is possible that those latter 
nodes are more likely to cooperate. 

Proximity features: 

� PCs. This feature counts the number of powerful 
devices in the neighborhood. The PCs have more 
CPU slots than handhelds. This difference allows 
them to share these resources.  

� Neighbors’ CPUs. This feature is the aggregated 
number of CPU slots in the neighborhood of a 
node. This feature is related to the previously pre-
sented PCs feature. 

� Two-hops neighbors’ CPUs. This feature is related 
to neighbors’ degree, but it aggregates the CPU 
slots for an area of two hops for a particular node. 

 
Note there are couples of features that have high 

correlation (i.e. similarity) between them. In that case 
it is enough for this analysis to use one of them. For 
example we have not used the device type feature 
because it provides information similar to CPUs. In 

this case, we have chosen CPUs because it has a nu-
meric value for the analysis. Likewise we use Re-
quest rounds instead of the Needed CPUs feature.  

6.2. Features selection algorithms 

The objective of these simulations is to execute the 
feature selection algorithms, which will suggest us a 
subset of relevant features to analyze during the 
study of the cooperation coefficient in several scenar-
ios. The features selection experiments were con-
ducted using filter-based approaches on the datasets.  

Two well-known feature selection algorithms were 
applied: (1) Correlation-based Features Subset Se-
lection (CFS), an algorithm that evaluates the feature 
subsets, and (2) ReliefF, an algorithm that evaluates 
individual features. We have chosen these algorithms 
because they provide reliable feature sets, they are 
able to process continuous variables, e.g. the cooper-
ation coefficient, and they let us understand the re-
source-sharing processes. Other algorithms can pro-
vide similar or even better results, but the underlying 
process is more complex to understand [19]. 

The Weka machine learning framework [15] pro-
vided the implementation of these algorithms. We 
briefly review these algorithms below. 

Correlation-based Features Subset Selection 
(CFS) [16]: CFS evaluates the usefulness of a subset 
of features by considering the individual predictive 
capability of each feature, along with their degree of 
redundancy. The algorithm selects subsets of features 
that are highly correlated with the class, but having 
low correlation between them.  

ReliefF [22]: This algorithm evaluates the useful-
ness of a feature by repeatedly sampling an instance 
and considering the value of the given feature for the 
nearest instance of the same and different classes. We 
have chosen it because it is noise-tolerant and unaf-
fected by feature interaction. However, ReliefF 
searches for all the relevant features, even if they are 
redundant. This algorithm assigns a “relevance” 
weight to each feature. In the simulations, we select-
ed features with a relevance ranking above 0. 

6.3. Selecting features for analysis 

The algorithms must rank the features according to 
their relevance values or order of importance. The 
topology feature is highly relevant in this study, since 
the four selected topologies do not have the same 
influence on the cooperation coefficient. In our pre-



liminary tests, we have seen that the selected features 
and their order depend on the topology feature. 

We classified the datasets into four groups to show 
the relevance of the topology. Table 3 shows the re-
sults (i.e. the selected and ordered features) after ap-
plying the algorithms to all datasets.  

We have used ten-fold cross validation in the eval-
uation of the features selection process [17]. For the 
CFS algorithm, we reported the number of times that 
a feature was selected in the ten-fold cross validation. 
For ReliefF algorithm, we reported the average rele-
vance of the ten relevancies from the cross validation 
(selected features had a relevance ranking above 0). 

Both algorithms selected the Request rounds fea-
ture as relevant for almost every dataset. Notice the 
CFS algorithm does not select features with high 
correlation; e.g., it selects only the most relevant one 
between PCs and Neighbor CPUs. Therefore the set 
of features selected by CFS tends to be minimal. 
However the ReliefF algorithm selects all relevant 
features, even if there is similarity among them. 

A first analysis of these results indicates that the 
cooperation coefficient in the Torus topology de-
pends mainly on the proximity features (i.e. Neighbor 
CPUs, Two-hops neighbor CPUs and PCs). This is 
an expected result because the Torus has no topolog-
ical properties differentiating its nodes.  

The cooperation coefficient in the Random topolo-
gy depends on the proximity features (i.e. PCs is the 
most influential feature), due to the low variation in 
the topological properties of the nodes. In the case of 
the Power Law and the Small-World topologies, the 
nodes behavior depends on network topological fea-
tures. In particular, the cooperation coefficient de-
pends on the Clustering coefficient. 

The set of relevant features obtained by both algo-
rithms seems to be similar, but it cannot be clearly 
seen by just analyzing Table 3. In order to check such 
hypothesis, we re-processed the results obtained by 
the ReliefF algorithm. This algorithm identifies the 
similarity between the selected features and thus 
helps to reduce the feature set. As mentioned above, 
we know the result of CFS tends to be minimal, and 
therefore it does not need to be re-processed. 

To reduce the ReliefF resulting feature set while 
keeping the optimal salient characteristics of the data, 
we applied Principal Component Analysis (PCA) 
transformations [17]. PCA is a procedure using an 
orthogonal transformation to convert a set of possibly 
correlated variables into a set of uncorrelated varia-
bles called principal components. Dimensionality 
reduction is achieved by keeping the components 
with highest variance. The number of principal com-

ponents is less than or equal to the number of original 
features. 

Table 3 

Selected and ranked features by topology 

Torus Random Power Law Small World 
CFS 

- Request 
rounds 
(10/10) 

- NeighborCP
Us (10/10) 

- Two-hops 
neighbor 
CPUs 
(10/10) 

- Request 
rounds 
(10/10) 

- PCs (10/10) 

- Request 
rounds 
(10/10) 

- PCs (10/10) 
- Clust. coef. 

(10/10) 

- Request 
rounds 
(10/10) 

- PCs (10/10) 
- Clust. coef. 

(10/10) 
- CPUs 

(10/10) 

ReliefF 
- Neighbor 

CPUs 
(0.004) 

- Two-hops 
neighborCP
Us (0.002) 

- Network 
size (0.001) 

- PCs (0.001) 
- Request 

rounds  
(0.001) 

- PCs (0.009) 
- Degree 

(0.009) 
- Neighbor 

CPUs 
(0.007) 

- Clust. coef. 
(0.002)                 

- Request 
rounds 
(0.001) 

- CPUs 
(0.001) 

- Network 
size (0.001) 

- Degree 
(0.007) 

- CPUs 
(0.002) 

- PCs (0.001) 
- Clust. coef. 

(0.001) 
- Neighbor 

CPUs 
(0.001) 

- PCs 
(0.017) 

- Neighbor 
CPUs 
(0.015) 

- Clust. coef. 
(0.004)                      

- Two-hops 
neighbor 
CPUs 
(0.003) 

- Degree  
(0.002) 

- Network 
size (0.002) 

 
Applying a PCA transformation can reduce the 

eight originally selected features (i.e. CPUs, Degree, 
Clustering coefficient, PCs, Request rounds, Two-
hops neighbor CPUs, Network size and Topology) to 
only 6 truly independent ones. Dimensionality reduc-
tion is accomplished by choosing enough eigenvec-
tors to account for some percentage of the variance in 
the original data (default 95%). Attribute noise can 
be filtered by transforming to the principal compo-
nents space, eliminating some of the worst eigenvec-
tors. After applying the PCA transformations the 
obtained results indicate that the relevant features 
selected by both algorithms are similar, and they cor-
respond to mainly those identified by CFS. 

6.4. Using selected features by examples 

The results obtained from feature selection analy-
sis allowed us to observe two clear implications: (1) 
the network topology is relevant to improve the co-
operation coefficient and (2) there are different fea-
tures to define “well-placed” handheld devices in 
each type of topology. 



Another important issue addressed in this study 
was the distribution of the various types of devices 
over the network in order to maximize the coopera-
tion possibilities (RQ 5). In order to answer this chal-
lenge, we ran several simulations to evaluate the sen-
sitivity of the cooperation coefficient to different 
nodes’ distributions, such as node degree and cluster-
ing coefficient. With this set of experiments we tried 
to achieve an optimal network operation, but the re-
sults showed that there is no significant difference 
among several nodes distributions (Table 4). 

 
Table 4 

Cooperation coefficient of handheld devices for various device 
placement strategies 

Topology Handhelds 
placed on 

Min. Max. Average 

Power 
law 

Clustering 39.89% 100.00% 79.93% 
Lower degree 40.76% 100.00% 74.25% 
Higher degree 37.79% 100.00% 80.91% 
Random 26.99% 100.00% 78.55% 

Small-
world 

Higher cluster. 49.40% 100.00% 81.67% 
Lower degree 48.48% 100.00% 81.12% 
Higher degree 50.00% 100.00% 81.42% 
Random 47.78% 100.00% 80.77% 
Higher degree 39.11% 100.00% 80.40% 

Random Random 34.59% 100.00% 81.69% 
Clustering 39.89% 100.00% 79.93% 

Since the cooperation coefficient is not sensitive to 
the analyzed parameters, it is possible to obtain a 
very robust system with some placement strategies. 
Therefore a random device placement strategy can 
give an acceptable Cooperation coefficient. 

In order to increase the cooperation possibilities 
we ran several simulations to evaluate the sensitivity 
of the Cooperation coefficient to the selected features. 
From the feature selection results, we chose Request 
rounds and PCs for the four network topologies, and 
we also considered four devices placement strategies. 
The simulations had 1000 nodes, a degree of 6 and 
40% of PCs. These PCs played a tit-for-tat strategy. 
Fig. 9 presents the computed handhelds' Cooperation 
coefficient of a Small-world network, considering the 
four device placement strategies. Next we explain 
each of the placement strategies. 

a) Random: This is the same strategy used in the 
simulations shown in Sect. 5. We will consider this 
strategy as the original one, and therefore we will 
compare the rest of the placement strategies with it. 
b) Requests: In this case the number of handheld 
requests has been reduced by 20% and the requests 
of PCs have been increased by 30%. However the 

total number of requests has been kept invariable; 
i.e. as in the original simulation. 
c) Heterogeneous links: This strategy considers 
placing nodes in a way that handhelds increase the 
number of links with the PCs.  
d) Requests and heterogeneous links: This strategy 
mixes the two previously presented ones.  

 

 

Fig. 9. Node success percentage on handheld devices vs. their 
clustering coefficient.  

Fig. 9 shows that the three new strategies improve 
cooperation among handhelds, with respect to the 
original one (random). We can also observe that ap-
plying strategy d) does not let the node cumulate the 
collaboration improvement produced by these strate-
gies separately. The results also show the reduction 
in the number of requests does not affect the “phase 
transition effect”. These results allow answering RQ 
5, indicating there exist heuristics for nodes place-
ment that allow improving the node placement coop-
eration. 

7. Lessons learned 

A number of issues related to the potential capabil-
ities and limitations of mobile collaborative applica-
tions are understandable based on the simulation re-
sults. Software designers must consider these issues 
to ensure the collaborative applications will be suita-
ble in a particular work scenario and also to support a 
specific mobile activity. The obtained results indicate 
that the cooperation coefficient decreases when: 
� The overlay collaborative network is only com-

posed of handheld devices (Fig. 2). It typically af-
fects the design of solutions supporting collabora-
tive activities with high users’ mobility.   



� The number of nodes in the overlay network de-
creases (Fig. 6). In the real world, mobile collabo-
rative networks are formed on-demand and usually 
they involve a small number of nodes. In that case 
the users must be physically close during the col-
laboration process to increase the nodes degree and 
thus ease the cooperation among devices. Other-
wise the collaboration process will be almost im-
possible to be done successfully. 

� Handheld devices are “aggressive” in the sense that 
they perform a high number of requests (Fig. 5). 
Therefore, when the available resources are scarce, 
the collaborative applications must wait for a ran-
dom time period before sending a new collabora-
tion request. It addresses two situations: (1) to re-
duce the probability of collision of those requests 
and (2) to ensure an important rate of the shared re-
sources. These issues impact directly on the re-
sponse time perceived by the end-user during the 
collaboration process. 

� The number of powerful devices in neighborhood 
decreases. The software designer, however, can use 
the handheld device placement strategies to try re-
ducing this impact (Sect. 6). For example, the ap-
plication could try using “open” mobile devices in 
the neighborhood, even if they are not involved in 
the collaboration process, as a way to improve the 
resources available for collaboration or to manage 
the current network size or topology. 
Furthermore, the simulations allow us to under-

stand the devices behavior from the local point of 
view and make some preliminary conclusions. For 
example, tit-for-tat strategies highly harm partici-
pants with a larger amount of resources (like PCs) 
compared to other participants (Fig. 7). This repay-
ment strategy is able to make the game as fair as pos-
sible. However, this is not a good global strategy to 
apply since it generates situations of under-used re-
sources (Fig. 7). Software designers must consider to 
use different (at least two) repayment strategies in the 
application, one for handhelds and another for pow-
erful devices. Typically it means to deliver two ver-
sions of the collaborative application, which must be 
able to interoperate between each other. 

8. Simulation method 

Software designers need to identify, at early stages 
of the development process, which computing sce-
nario is feasible to use when trying to address collab-

oration among heterogeneous devices. An early clari-
fication of this issue can help developers to avoid 
several problems, e.g. writing source code that will 
not be part of the final system, developing a system 
that will have performance/scalability limitations, or 
experimenting a lack of collaboration among devices 
because there are insufficient resources to perform a 
certain task. 

Based on the study results reported in this article, 
we have systematized and simplified the performed 
simulation process in order to make it feasible to be 
used by software designers during the early stages of 
a development process. Figure 10 summarizes the 
resulting simulation method. 
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Fig. 10. Structure of the simulation method.  

The first step of the process involves determining 
the set of services that will consume shared resources 
through the network. Based on that it is possible to 
estimate, for each type of device participating in the 
computing environment, the resources that they will 
have available for sharing with other nodes (step 2) 
and also those that are required to process the collab-
orative services (step 3). 

The results of step 2 represent the constraints on 
the solution and the results of step 3 represent the 
requirements. Considering these two components it is 
possible to explore several collaboration scenarios to 
determine which solution can provide a suitable op-
tion to deal with the collaborative services (step 4). 

Based on the feature set identified and validated in 
section 6, the features of three main components 
should be set: the devices (4.1), the network topology 
to be used (4.2), and the nodes proximity (4.3). Using 
these settings and the resource requirements identi-
fied in step 3, it is possible to automatically obtain 
various collaboration indicators (e.g. the cooperation 
coefficient, the cooperation willingness and the CDF) 



for a heterogeneous computing environment (step 5). 
Software designers can interpret these indicators in 
order to determine suitable settings to deal with the 
collaborative services. 

Depending on the indicator values, the designers 
can perform changes to the feature set, in the re-
sources availability or come-back to the first step to 
perform a redefinition of the simulated computing 
scenario. If the indicator values for a certain setting 
are favorable, then the designers will know that such 
configuration can be assumed as a structural solution 
during the next steps of the system development pro-
cess; i.e. during architectural and detailed design and 
also during the implementation process. 

This simulation method can also be used to evalu-
ate capabilities and limitations of already implement-
ed systems, in term of collaboration for sharing re-
sources. It is possible to obtain the collaboration in-
dicators determining how suitable a collaboration 
strategy is for sharing resources in a computing sce-
nario by replicating the work environment of an ap-
plication and the implemented strategy. Therefore 
this simulation method can be used for both, support-
ing the design of new solutions as well as evaluating 
the suitability of already implemented applications. 

This simulation process can be implemented 
through a tool that requires the user select just the 
simulation options. It will ease the use of the method 
by software designers.  

9. Guidelines to deal with resource-sharing issues 

Guidelines that help software developers to deal 
with resource-sharing in mobile collaboration scenar-
ios are presented below. We show some solutions to 
implement such guidelines on mobile applications. 

9.1. Dealing with network topology 

If the overlay network depends on the developers, 
then their efforts should focus on ensuring that the 
applications use a small world topology. Kleinberg 
identified the problem of how to find shortest paths 
in a decentralized way, in the case of small world 
network with only local information [21]. A new 
method of constructing a small world topology in a 
wireless network was proposed in [18]. Wang and 
Nakao [42] propose a scheme of evolutionary game 
theory for topology evolution to change any given 
overlay topology into the small world structure. If the 
application runs on a non-controllable topology, 

software designers should try the network nodes have 
a large number of links among them. 

9.2. Devices placement 

Roy et al. [37] proved that the overlay placement 
problem is a non-deterministic and polynomial-time 
hard problem. In section 6.4 we have seen that the 
device placement can be used to improve the nodes 
cooperation level. Since we use an overlay network, 
software designers can embed in the collaborative 
application a software component that is able to take 
advantage of the existence of a physical and a logical 
(overlay) network in the collaboration scenario. Such 
a component should listen to the physical layer of the 
network and find candidate nodes to be “placed” in 
the overlay network. Although such devices do not 
need to be aware of their participation in the collabo-
ration process, the effect produced on the whole sys-
tem would be similar to place a regular node in the 
overlay network. Thus, the collaboration capability 
of the whole system could be improved. 

9.3. Network scale 

An unexpected result of our study was the fact that 
the network size affects the cooperation coefficient. 
Therefore, we recommend that the devices interested 
in sharing resources should form a single network, 
because partitioning the network will not increase the 
cooperation coefficient. 

9.4. Handheld versus PC requests  

Considering the presented scenarios, if all 
handheld requests depend on the developers deci-
sions, then the cooperation algorithm should focus on 
ensuring that handhelds perform fewer requests than 
PCs; and also that such requests are equivalent to the 
available shared resources of each node. It has been 
shown in Fig. 5 that non-aggressive nodes – those 
making a number of requests equivalent to their own 
available resources - get a good collaboration rate. 
By contrast, those nodes having an aggressive behav-
ior frequently fail their requests because we are using 
a tit-for-tat collaboration strategy, which assures a 
fair payoff between shared and gained CPU slots. It 
means that a node should not run a process asking 
most of the required resources to other nodes, be-
cause in that case the unavailability of shared re-
sources will make the system enter in a deadlock.  



Furthermore, if the collaboration strategy depends 
on the developers and powerful machines will be 
introduced in the network, it is mandatory to consider 
a different approach (for handhelds) to share re-
sources and increase their usage. The simulation 
method presented in the previous section can help 
designers to address these cases. 

10. Conclusions and further work 

There exists today a many stationary and mobile 
computing devices that could be collaboratively used 
to support several activities in areas such as mining, 
construction, transportation, or manufacturing. In fact, 
most loosely-coupled activities can be addressed us-
ing just mobile devices or embedding a portion of 
stationary devices. Managing device heterogeneity is 
an open issue in mobile collaborative systems; there-
fore there are no guidelines on how to deal with it.  

This paper presented a study that tries to under-
stand the challenges behind the process of hardware 
resource-sharing in mobile collaborative scenarios. 
The study was based on simulations, which analyzed 
the impact of several overlay network topologies 
(particularly torus, random, power law and small-
word) on the resource sharing process. The simula-
tions considered two types of network nodes, 
handheld devices and PCs.  

The obtained results allow us to answer six re-
search questions. Some of them focus on measuring 
the impact of a network feature (e.g. size, topology or 
degree) on the collaboration process, while others 
intend to understand the consequence of performing 
particular actions on the network (e.g. introduce 
powerful devices or manage the nodes placement) as 
an strategy to help improve the collaboration rate 
among participants.  

After performing the simulations we did an addi-
tional analysis of the network features participating 
in the system to determine their roles and relative 
importance in the collaboration process. Known data 
mining techniques were used in this analysis. The 
results show the availability of shared resources in 
local/one-hop/two-hops devices considerably affects 
collaboration. The network topology, its size, level of 
clustering and degree also affect such process. 

These results provide reusable knowledge for de-
velopers of mobile collaborative applications. In or-
der to capture such knowledge and put it available for 
software designers, a simulation method was defined 
by systematizing and simplifying the process con-

ducted in the reported study. This simulation method 
can help designers to both, (1) identify appropriate 
strategies for sharing resources depending on the 
computing scenario, and (2) determine the suitability 
of already implemented solutions to share resources 
in a certain work environment. The use of this simu-
lation method during the early stages of an applica-
tion development can help software engineers to 
avoid several problems.  

A set of lessons learned and guidelines have also 
been included in this paper for helping engineers to 
design mechanisms that allow mobile users to share 
their free computational resources almost without 
affecting the performance of the local applications. 

As mentioned above, in this area there are still 
several open issues and research opportunities. For 
example it would be interesting to extend the results 
shown in Sect. 5 to provide a distributed self-
placement algorithm based on empirical observations. 
We believe it is possible to find mechanisms that 
dynamically include nodes so that the network topol-
ogy is favorably changed. Based on that solution it 
would be possible to build self-regulated ad-hoc net-
works encouraging nodes cooperation. 

Another point to address as part of future work is 
the heterogeneity of the communication links com-
posing the network, which clearly affects the nodes’ 
collaboration capability. In this article we have as-
sumed the transmission capability of the network 
links is stable (i.e. their quality does not affect the 
collaboration results), since the simulations try to 
isolate the effects produced by other variables name-
ly the network topology, the devices population or 
the network degree. Analyzing the influence pro-
duced by heterogeneous communication links on the 
collaboration process can be the goal of a next study. 
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