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Abstract—Roles and positions are structural components in
complex social systems which group actors based on how similarly
they are connected to the rest of the actors. Role and position
detection methods have been successfully used to evaluate and
understand the dynamics of social networks and the behavior of
their members. However, actor similarities used to detect positions
have been based on pairwise comparisons so far: e.g., structural
equivalence states that Alice and Bob are in the same position if
they are both connected or not to the same other actors in the
network, one by one. In this work we present a new framework
to find positions and roles using comparisons between actors
and sets of actors instead of just using pairwise comparisons.
In this way we enable the usage of many more measures of
similarity inside position and role detection methods, e.g., based
on distances, community structure, triangles and cliques. As a
result, we can identify new types of easily interpretable positions.
Additionally, the proposed idea can be adapted to more complex
models like hypergraphs or multiplex/multi-relational networks.
We have evaluated our work on both synthetic and real data,
using several existing and new similarity measures and providing
both qualitative and quantitative evidence of the new possibilities
enabled by our approach.

I. INTRODUCTION

Structural analysis on networks intends to capture and
interpret how nodes are related according to the network
topology. When applied to social networks, structural analysis
is able to identify key actors1 or groups of actors whose
connectivity influences in somehow the dynamics of the sys-
tem. Three typical ways of grouping actors based on their
connections consist in identifying communities, positions and
roles. While related, these are three distinct types of groups
and they typically require distinct algorithmic treatments.

To briefly recall the difference between community, po-
sition and role, we use Padgett’s social network represent-
ing business relationships among Florentine families during
Renaissance [1] as an example (see Fig. 1). A community
indicates a cohese group of actors, with many connections
inside the group and fewer relationships with other actors
outside it. As an example, the five nodes on the top of the
figure form a community. Roles and positions, instead, focus
on the interchangeability of the actors, and do not require
any internal connectivity. In its simplest form, a position is
defined as a group of actors who are similarly connected
to other actors in the network. In our example, the families
Salvati, Pazzi and Tornabuon are in the same position, because
they are all connected to the Medici family and to no other
family. Roles, instead, refer to actors with similar patterns of
connectivity, independently of the specific actors to whom they
are connected. In our running example, the Barbadori family

1Individuals or organizations corresponding to the nodes in the social graph.

has the role of connecting two otherwise disjoint parts of the
network. From this point of view, it does not matter who
exactly is connected to them: if the Barbadori family were
connected to Salviati instead of Ginori, it would still play the
same role in the network, but from a different position.

Fig. 1: Padgett’s business family network, where we have
highlighted a community (red area), a structurally equivalent
position (green nodes), and a bridging role (yellow node)

In this work we focus on position and role analysis.
To understand our contribution we can consider a standard
mathematical definition of the concept of position. In the
model based on the so-called structural equivalence, two actors
are in the same position if and only if they are connected with
the exact same actors. Let G = (U,E) be a graph representing
a social network, where U is a set of nodes representing actors
and E(i, j) = 1 if nodes i and j are connected, 0 otherwise.
Then, we can say that two nodes i and j are structurally
equivalent (and so in the same position) if and only if [2]:

E(i, k) = E(j, k) ∀k ∈ U ; k 6= i, j (1)

In our example, Salvati and Pazzi are both connected to
Medici (so, E(Salvati, Medici) = E(Pazzi, Medici) = 1), and
for every other actor k they are not connected to it, so E equals
0 for both families in all other cases.

This basic definition has been extended in many ways in the
literature [3], e.g., replacing E with other comparison measures
(that we generically notate as D in the following) or using
this formula in an iterative process, as reported in Section IV.
However all existing variations rely on comparing a pair of
actors against one single item at a time, here represented by the
symbol k. In this paper we extend this perspective on position



analysis by replacing Eq. 1 (and its generalizations) with a
set-based definition. Two nodes i and j are, according to our
model, in the same position if and only if:

D(i, Sk) = D(j, Sk) ∀Sk ⊆ U (2)

The main formal difference is the usage of a set Sk instead
of the singleton k: to decide if i and j belong to the same
position, we check how they are related not just to other single
actors, but to groups of them. This allows us to use several
more measures (D) to compare actors, that would not make
sense for single pairs of nodes (like E(i, j)) and have thus
been overlooked in the literature on position detection.

As a concrete example, consider Fig. 2, showing Padgett’s
marriage network with each family colored according to its
social position. Families Albizzi and Guadagni are connected
to totally different nodes, that are themselves in different
positions. So, they would not be considered being part of the
same position by existing methods. For example, if we check
the Medici family, Albizzi is connected to it while Guadagni
is not. If we check Lambertes, Albizzi is not connected to
it while Guadagni is. However, if we now consider the pair
{Lambertes, Medici} and a comparison function:

D(i, {k, q}) =
{

1 if i ∈ short. path betw. k and q
0 otherwise (3)

we can see that both Albizzi and Guadagni are on a shortest
path between them. If we check other pairs of nodes, we can
see that this is true in several other cases, e.g., to efficiently go
from Bischeri to Ginori we should also pass through Albizzi
and Guadagni. In summary, Albizzi and Guadagni are included
in the same position because they share the same relationship
with other pairs of nodes, instead of single individuals.

This example highlights three important aspects of our
work. First, using this set-based comparison and the corre-
sponding distance-based function we are identifying a new
type of position. Second, this extension allows us to use
several other network measures involving comparisons with
larger sets of actors, like triangles, cliques and communities
– we will introduce all these additional possibilities in the re-
mainder of the paper. Third, we obtain a cleaner understanding
of the often ambiguous relationship between positions and
roles: with this extended definition, we can say that for each
type of position we have a corresponding role, which considers
the pattern of connectivity but not the specific individuals
involved. In our example, the Ridolfi and Strozzi families might
also constitute a position, different from the previous one –
e.g., they are in the shortest path between Peruzzi and Medici,
which is not the case for Albizzi. However, the number of the
shortest paths traversing them (that is, their betweenness) is
similar, making them play a similar role in the network. It
is worth noticing that to the best of our knowledge concepts
like betweenness had never been related to the concept of
position before, while this connection directly follows from
our extended formalization once Eq. 3 is used as a comparison
function.

As a future-looking note, our extended model also gives
us the flexibility to study social roles and positions in other
network models like hypergraphs, which can be represented

as hyperlink adjacency matrices without losing information
about the hyperlinks – as it would happen if the regular adja-
cency matrix is used. Another example are multiplex/multi-
relational graphs, where our model enables the usage of
measures based on paths traversing multiple types of relational
ties.

Fig. 2: Padgett’s marriage family network and approximate
positions defined as being part of the shortest path connecting
pairs of nodes

In summary, the main contributions of this paper can be
summarized as follows.

• We introduce a novel framework to identify new types
of social positions and roles based on well-known
network measures (Section II).

• We validate our model both qualitatively and quanti-
tatively, using real and synthetic data (Section III).

In our quantitative validation, we compared the positions
found in a real network with the ones found in synthetic
networks generated according to different models. The col-
lected evidence shows that our approaches do not just identify
randomly occurring behaviors, but positions that are only
found in real social networks (Section III-C).

II. A NEW BLOCKMODELING FRAMEWORK

Blockmodeling [4] is, to our knowledge, the most used
and explored technique to detect roles and positions in social
networks and, more generally, in any system that can be mod-
eled mathematically using a graph. In blockmodeling, actors
are grouped into positions – called blocks, sometimes roles –
based on a similarity or dissimilarity measure between them.
To compute this measure, actors are compared based on their
connectivity in the network. In its original form, the similarity
measure corresponds to the correlation between columns in
the graph adjacency matrix, which results in including actors
connected to the same other actors into the same position.

In this section we describe our framework for group
relations which allows us to apply blockmodeling analysis to
find social roles and positions based on the global structure
of the network, rather than being constrained by pairwise
comparisons. The framework has two basic components: the



extended comparison function for group measures and the
computing algorithm for identifying positions and roles.

The extended comparison function is a two-dimensional
matrix (M ) that stores the similarity or dissimilarity between
actors (rows) and sets of actors (columns). The computing
algorithm used in our experiments is a generalization of the
REGE/A algorithm proposed in [5] for regular equivalence. In
general, any clustering algorithm already used in unsupervised
blockmodeling analysis could be used instead.

A. Extended comparison function

In order to compare actors with subsets of actors we
replaced the adjacency matrix with a more complex structure,
capable of storing extended relations. It will be used as input
data for the computing algorithm. Building it involves two
interdependent steps: a) dividing the actors into groups of
interest and b) defining the comparison measure.

We have mentioned how our approach is based on a generic
comparison function:

D : (U, S)→ R (4)

defined over a graph G = (U,E), where S ⊆ 2U depends on
D. As in Eq. 3, S consists of all subsets of U of cardinality 2.
We can then use the function D to build our extended matrix
M , by substituting the adjacency matrix equivalence in Eq. 1
with our formula. Hence, we can define the extended matrix
M as:

M(i, Sj) = D(i, Sj) (5)

Back to our example on detecting positions as being part
of the shortest path that connects pairs of nodes, Fig. 3 shows
the corresponding extended matrix M . Each cell in the matrix
corresponds to one binary relation between an actor i and a
set of two other actors (k, q).

Fig. 3: Extended relations matrix for the Padgett’s marriage
family network.

B. Positions and role assignment

After computing our extended comparison matrix, which
associates each actor in the network with the subsets of
actors used to measure the equivalence, the next step consists
in partitioning the actors into βM = β1, β2, . . . βm similar
positions and ρZ = ρ1, ρ2, ρ3, . . . ρz similar roles.

Positions are computed by clustering the rows of the
extended matrix and forming groups of actors whose relation
with the same subsets are similar. In the literature there are

many clustering algorithms that can be used to make this
assignment. In order to simplify the results, and for compari-
son purposes with other indirect blockmodeling methods, we
decided to use hierarchical clustering. In concrete, we first
generate a dissimilarity matrix by computing the euclidean
distance between rows of our extended matrix M and then we
generate a hierarchical clustering using the Ward [6] cluster
similarity function. Finding the optimal number of clusters
(i.e., positions) is discussed in detail in Section II-C.

The procedure to identify roles uses the same extended
matrix M as input to compute actors’ patterns of relations –
that is, some summary of the distribution of row values. Then,
actors are grouped using any clustering algorithm. In case of
using a binary extended matrix, for example, it is enough to
count the number of 0s and 1s and compare them.

TABLE I: Roles identified as being part of the shortest path
between pairs of nodes in Padgett’s marriage families network.

ρ1 ρ2 ρ3 ρ4 ρ5
ACCIAIUOL CASTELLAN BARBADORI ALBIZZI MEDICI

GINORI PERUZZI BISCHERI GUADAGNI
LAMBERTES SALVIATI

PAZZI TORNABUON
PUCCI RIDOLFI

STROZZI
0 4, 7 11 - 17 26, 27 50

As an example of positional analysis, we used our method
and depicted in Fig. 3 the resulting assignment of actors that
are being part of the shortest path that connects pairs of nodes
into four positions. Table I, instead, shows the corresponding
roles detected using the same equivalence. Notice that the two
assignments are not identical. While the Medici family, as an
example, is the single member of a role and a position, Strozzi
and Tornabuon, who play the same social role, are in fact in
different positions – because they are in the same number of
the shortest paths, but between different sets of actors. Under a
strict check of equivalences between the rows of the extended
matrix, positions would be finer partitions of the roles.

C. Approximate positions and roles

As we mentioned, each definition of equivalence admits
different degrees of freedom, because in most cases – espe-
cially when the notion of structural equivalence is used – the
normal variability in connectivity prevents us from finding
two nodes with many connections and connected with the
exact same other nodes. To relax the definition, and find
meaningful positions and roles using indirect approaches, it
is sometimes necessary to utilize some knowledge about the
social network under analysis, e.g., specifying the number of
expected positions.

As an alternative, we can obtain different numbers of po-
sitions by cutting the dendrogram generated by the clustering
algorithm (see Fig. 4) at different heights, indicated as h in
the following. Cutting the dendrogram at height h = 0% we
will find non-approximated positions, e.g., two actors must be
indistinguishable according to the D function to be including
in the same position. As we pull up the cutting point we
can group actors into fewer positions, where more and more
differences in the values of D are allowed among actors in the
same position.



Fig. 4: Dendrogram representing the hierarchical clustering of
the rows of the matrix in Fig. 3 based on actor similarity

III. EXPERIMENTAL ANALYSIS

In order to evaluate our methodology we built a library in R
using the blockmodeling-package [7] as a baseline. The library
has been used to perform the experimental analysis, which
included the detection of roles and positions with different
combinations of graphs and equivalences. In this section we
first describe the networks used for the evaluation and the
comparison of positions detected on both social and synthetic
networks. Finally, we qualitatively compare the results of the
different extended measures proposed.

A. Datasets

We evaluated our proposal using a set of real social
networks – representative of the social structures that arise
and are well known in the literature. Additionally, we created
a set of synthetic networks for comparison purposes.

Florentine families [1]: contains a two-relational graph
describing the social relations among Renaissance florentine
families (person aggregates) collected by John Padgett from
historical documents.

AUCS [8]: contains a five-relational graph describing the
social relations among employees of a Computer Science
department. For the analysis we have flattened the network
into a mono-relational graph.

Synthetic data: contains a set of networks built using
the Erdos-Renyi [9] and Barabasi [10] models, with the same
number of nodes as our real networks, but varying densities.

B. Other extended relations as equivalences

We have previously described our framework using the
example measure of being in the shortest path (BSP), which
intends to capture actors between common pairs of actors.
Next we describe a set of easily interpretable measures, to
demonstrate the possibilities of our framework, and how to
build their corresponding matrix M .

Clique connectivity (CC) and Minimum Clique connec-
tivity (MCC) intend to identify groups of actors with the same

ties to the same cliques. Both measures use cliques as the
sets of actors required by our method, but differ in how to
compute the equivalence: the former computes the number of
ties between each actor u and a given clique, while the latter
only considers binary relations: 1 if u has at least one tie with
some member of the clique, 0 otherwise.

Community connectivity (COMC) and Others’ commu-
nity connectivity (OCOMC) intend to identify groups of
actors with the same ties to the same communities. Hence,
the matrix M contains the communities as columns, and the
percentage of ties to their members as values. However, while
COMC considers all communities, OCOMC discards ties to
the community to which the node under evaluation belongs.
In the following experiments communities are computed max-
imizing modularity.

C. Framework validation

In the following we investigate whether the roles and
positions found in real social networks and synthetic graphs
differ. If they did not, then we could question the ability of our
approach to identify meaningful social structures. Synthetic
graphs have been built according to the Erdos-Renyi (ER-
p) and Barabasi-Albert (BA-p) models with p denoting the
probability and the exponent of the model, respectively. Each
experiment has been repeated 10 times to avoid random effects
due to the network formation. As the results are similar for the
tested social networks, we only report those for the AUCS data.

The experiment identified three different patterns of posi-
tions. Fig. 5 shows, for each category, the number of posi-
tions found as y-axis and the corresponding height h where
the dendrogram is cut (x-axis). We can observe that in all
three patterns the real social network always shows positions
containing multiple nodes requiring equal (Fig. 5a) or less
(Figs. 5b and 5c) approximation than the synthetic graphs,
and hence, closer to the ideal clustering of actors based on
the definition of similarity. In general, random graphs like the
Erdos-Renyi networks require more approximation when our
method is used. On the other hand, BA networks are formed by
a preferential attachment process, which is believed to be more
similar to the interaction processes that form social networks,
and hence is more likely that the positions found are capturing
some social properties from the graph. However, as the number
of nodes in the tested graph decreases it is more likely that
structural differences become less evident.

D. Similarity measures analysis

The different sizes of positions depicted in Fig. 5a are
explained by the flexibility, in terms of measure, of each equiv-
alence. More sub-settings of actors will increase the number
of possible row combinations, and hence, more heterogeneous
positions; while fewer sub-settings will tend to create fewer
positions with fewer uncertainty. On the other hand, binary
comparison measures will generate more similar measures than
valued ones, but probably more meaningful as they tend to
cluster more actors into fewer positions.

Within the indirect blockmodeling methodology we also
need to make a distintion between positions actively identified
by the similarity measure and those actors that are not captured
by it, e.g., disconnected nodes whose value computed by the



(a) Community based results (b) SE, BSP and CC results (c) MCC results

Fig. 5: Number of positions found at different heights h of the dendrogram for three extended measures. Each line represents
the AUCS network and one of the 6 synthetic graphs.

(a) SE. h = 0% (b) SE. h = 25% (c) CC. h = 0% (d) CC. h = 12% (e) MCC. h = 0% (f) MCC. h = 53%

(g) COMC. h = 0% (h) COMC. h = 11% (i) BSP. h = 0% (j) BSP. h = 17% (k) OCOMC. h = 0% (l) OCOMC. h = 57%

Fig. 6: Positions detected using a traditional measure – structural equivalence (SE) – and the extended measures introduced in
this paper for the Business social network of Florentine families, at varying levels of approximation

measure would always be 0 and that would thus be included
in a common fictitious position. As an example, in Fig. 6
nodes grouped together with the same color represent common
positions, and we used the gray color to mark those nodes
connected in such a way that is not captured by the measure
at hand. We can observe that, by definition, our “being in the
shortest path” extended measure places in the same position
actors that are not in any shortest path between others or are
completely disconnected to other actors.

The individual analysis of the measures shows that, for
the used social network, the framework is able to find some
non-trivial positions with no approximation using some of the
tested similarity functions. As an example, the OCOMC mea-
sure finds two positions clearly containing actors connecting
the upper community with the bottom one; however, the BSP
measure puts each actor into a separate position. To avoid
this problem, it can be useful to allow some approximation
(h > 0), and the experiments suggest that different measures
may require more or less flexibility. As a general rule, higher

differences between h values are an indication that the posi-
tions found will probably be less significant.

IV. RELATED WORK

Both concepts of role and position have been redefined
many times in the literature, by mathematicians and sociolo-
gists, more or less formally. In our work we use the definition
provided by Wasserman and Faust [4]: “In social network
analysis position refers to a collection of individuals who
are similarly embedded in networks of relations, while role
refers to the pattern of relations which obtain between actors
or between positions. The notion of position thus refers to a
collection of actors who are similar in social activity, ties, or
interactions, with respect to actors in other positions.”

Despite the lack of mathematical notation, this definition
clearly states the idea of identifying positions as a clustering
problem where actors – vertices of a graph – are assigned
to smaller subsets – called positions – based on a notion of



similarity. The similarity not only measures how similar the
local connectivity between pairs of actors is in the graph, but
can also measure other properties or relations.

Structural equivalence is the most basic and strict notion
of similarity. Other similarities have been developed lately to
relax the notion of equivalence. In regular equivalence [4],
for example, two actors are in the same position if they
have similar relations with other positions; while in stochastic
equivalence [11] two actors are in the same position if they
have the same probability distribution of ties with other actors,
which is more similar to our notion of role. In a general
form, we can generalize these notions of equivalence as a set
of node-based features: Ah(i) ∀h ∈ H and distance-based
features: Dp(i, j) ∀p ∈ P ; k 6= i, j; where H is a set of node
attributes and P is a set of comparison functions. Notice that
these relations still constrain the model to a) the adjacency
connectivity matrix and b) pairwise actor comparisons (i, j).

Several generalizations have been developed to find posi-
tions without perfect similarity/dissimilarity [11], to be used
in weighted graphs [7], or even to find non-trivial equivalent
positions [12]. While these approaches have proved useful to
detect some kinds of positions, and are flexible enough to
accommodate different kinds of similarity functions, they are
also based on pairwise relationships. However, the general idea
of finding approximate equivalences is also fundamental in our
framework, because a strict check for equivalence would rarely
identify any groups of similar actors in real social networks.

In [13] the authors describe a new taxonomy for role
discovery methods, which also introduces the idea of “feature-
based role discovery”. According to their proposal, the sim-
ilarity between nodes can be measured using a set of node-
structural features (e.g. degree, distance, etc.), which can be
any set of measures taken from the initial graph. It is possible
to argue that some of the extended equivalences proposed in
our work could be used as features in their model, but in our
framework we keep track of the relation between the measure
– or feature – and the nodes related to it – the subsets of nodes
that are needed to compute the measure. Because of this, our
framework is able to measure not only patterns of relations
(roles), but also positions.

V. CONCLUSION AND DISCUSSION

Blockmodeling has been primarily used as a way to de-
tect roles and/or positions in social structures using node-
based measures. A lot of extensions have been proposed for
blockmodeling, many of which based on replacing the original
comparison function with alternative ways of measuring the
network structure around the nodes. Motivated by the will of
applying this traditional approach to more complex network
models like multi-relational networks, we have proposed a
conceptual extension of blockmodeling that allows us to plug
in additional comparison functions not usable in a standard
setting. At the same time, this extension enables the discovery
of new kinds of positions also on simple networks: in this
paper we have focused on this aspect, providing an analysis
of the new possibilities and limits of our proposal.

More in detail, according to our proposal, to enable the
usage of additional types of similarity functions it is necessary
to extend the regular similarity matrix into a more complex

structure able to relate actors in a network with a) the extended
measure and b) the extra information used to compute such
measure – in this case, subsets of actors. These new measures
generate a new asymmetric equivalence matrix, that can be
analyzed to find both social roles and positions.

The selection of the extended measures depends entirely
on the objective of the analysis and/or the meaning of the
positions and roles desired. Theoretically, any measure com-
puted in a graph as a result to apply a given function over
a node and a set of nodes would be a candidate. In practice,
we have observed that some measures require higher values of
approximation to identify positions containing multiple nodes.
In the future we plan to incorporate direct blockmodeling algo-
rithms into our framework. Additionally, we want to extend the
current proposal to other graph models, in order to understand
more complex systems like multi-relational social networks.
This next step will require the consideration of multi-relational
measures.
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